Loading…

DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1

Synthetic Aperture Radar (SAR) images acquired by Earth observation satellites often constitute the only source of information for monitoring the progression of flood events over larger regions. Particularly attractive are the SAR data acquired by the Copernicus Sentinel-1 satellites because they ar...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2020-08, Vol.V-3-2020, p.641-648
Main Authors: Wagner, W., Freeman, V., Cao, S., Matgen, P., Chini, M., Salamon, P., McCormick, N., Martinis, S., Bauer-Marschallinger, B., Navacchi, C., Schramm, M., Reimer, C., Briese, C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic Aperture Radar (SAR) images acquired by Earth observation satellites often constitute the only source of information for monitoring the progression of flood events over larger regions. Particularly attractive are the SAR data acquired by the Copernicus Sentinel-1 satellites because they are free and open, and combine a short revisit time with a good spatial and radiometric resolution. In this contribution, we discuss how a Sentinel-1 data processing system should be designed to optimally benefit from the dense Sentinel-1 time series and advanced algorithms such as change detection or machine learning methods. This was one of the questions addressed by an expert group tasked by the Joint Research Centre of the European Commission to investigate the feasibility of an automated, global, satellite-based flood monitoring product for the Copernicus Emergency Management Service. Drawing from the expert group report, we distinguish three broad categories of data processing architectures, namely single-image, dual-image, and data cube processing architectures. While the latter architecture is the most demanding in terms of large storage and compute capacities, it is also the most promising to derive high-quality Sentinel-1 flood maps comprised not just of the flood mask but also of data fields describing the retrieval uncertainty and masks showing where Sentinel-1 cannot detect floods due to physical reasons. Therefore, we recommend to use data cube processing architectures and showcase the use of the Austrian Data Cube for monitoring a small-scale flood event that occurred in Austria in November 2019.
ISSN:2194-9050
2194-9042
2194-9050
DOI:10.5194/isprs-annals-V-3-2020-641-2020