Loading…
The High-Energy Milling Preparation and Spectroscopic Characterization of Rare-Earth Ions Doped BaY2F8 Nanoparticles
BaY2F8 nanoparticles (NPs), doped with Yb3+ and Er3+ ions, were successfully produced by high-energy ball-milling. High-quality monoclinic single crystals (sp. gr. C2/m, a = 0.6969(3), b = 1.0502(1), c = 0.4254(1) nm, β = 99.676°) grown from the melt by the Bridgman technique were used as raw materi...
Saved in:
Published in: | Crystals (Basel) 2022-05, Vol.12 (5), p.599 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BaY2F8 nanoparticles (NPs), doped with Yb3+ and Er3+ ions, were successfully produced by high-energy ball-milling. High-quality monoclinic single crystals (sp. gr. C2/m, a = 0.6969(3), b = 1.0502(1), c = 0.4254(1) nm, β = 99.676°) grown from the melt by the Bridgman technique were used as raw materials. The prepared nanocrystals were comprehensively studied by X-ray diffraction analysis, transmission electron microscopy, and optical spectroscopy. The fabrication possibility of single-phase irregular shaped Ba(Y0.964Yb0.030Er0.006)2F8 NPs in the size range of 20–100 nm with a milling duration of 10 h at 600 rpm is demonstrated. Ba(Y0.964Yb0.030Er0.006)2F8 NPs show intense luminescence by both up- (λ = 540 and 650 nm) and down-conversion (λ = 1540 nm) mechanisms upon IR excitation (λ = 980 nm). A qualitative comparison of the spectroscopic characteristics of the produced Ba(Y0.964Yb0.030Er0.006)2F8 NPs with the initial bulk crystal and the widely used up-conversion β-Na1.5(Y1.17Yb0.3Er0.03)F6 NPs is presented. Experimental data offer great opportunities of the Ba(Y0.964Yb0.030Er0.006)2F8 NPs applications in nanophotonics and biotechnology. High-energy ball-milling has potential as a versatile method for the scalable production of fluoride nanoparticles. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12050599 |