Loading…

Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs

In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the micr...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-10, Vol.13 (11), p.1821
Main Authors: Cao, Miaolong, Cao, Shi, Zhao, Jincheng, Zhu, Jiayi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743
cites cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743
container_end_page
container_issue 11
container_start_page 1821
container_title Micromachines (Basel)
container_volume 13
creator Cao, Miaolong
Cao, Shi
Zhao, Jincheng
Zhu, Jiayi
description In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.
doi_str_mv 10.3390/mi13111821
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745930117</galeid><doaj_id>oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214</doaj_id><sourcerecordid>A745930117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhdRbKm98RcEvBFha76zuRFKW9vCUcFW8C5ks5NzctxNanZXOf--2Z6i1gwkw-SdZ_IxVfWa4BPGNH4_BMIIIQ0lz6pDihWtpZTfn__jH1TH47jFZSily_SyOmCyWMPpYZU-zwPk4GyPbqa526Hk0e0G8lACF3Fjo4MB4oRCRBbdhLjuoUY2dug8zW3xV3YHGX0KLidX1BF6dAV2WqQ_0O8wbdB58B7ywvga2vFV9cLbfoTjx_Wo-vbx4vbsql59ubw-O13VjpNmqjVQjzUlmgmmiHDQCNJ6JggHBYpZ3AotqRDUYWDOttBwyTvZYO-8V4qzo-p6z-2S3Zq7HAabdybZYB4CKa-NzVNwPRjSCMk4FD51vBW0lMXKyk5ZJh0lC-vDnnU3twN0rtwl2_4J9OlODBuzTr-MlloLrgvg7SMgp58zjJMZwuig722ENI-GKiYahYlapG_-k27TnGN5qkXFpSTqAXiyV61tuUCIPpW6rlgHQ3Apgg8lfqq40AwTokrCu31C-adxzOD_nJ5gs_SR-dtH7B7t5rb6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734661749</pqid></control><display><type>article</type><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</creator><creatorcontrib>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</creatorcontrib><description>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13111821</identifier><identifier>PMID: 36363842</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Analysis ; Cooling ; Finite element method ; Fluid flow ; Heat conductivity ; Heat sinks ; Heat transfer ; heat transfer enhancement ; Mathematical models ; Microchannels ; Numerical analysis ; numerical simulation ; Parameters ; Pressure drop ; Reynolds number ; Simulation ; Simulation methods ; single- and double-Layer microchannel heat sink ; Temperature distribution ; Thickness</subject><ispartof>Micromachines (Basel), 2022-10, Vol.13 (11), p.1821</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</citedby><cites>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734661749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734661749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Cao, Miaolong</creatorcontrib><creatorcontrib>Cao, Shi</creatorcontrib><creatorcontrib>Zhao, Jincheng</creatorcontrib><creatorcontrib>Zhu, Jiayi</creatorcontrib><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><title>Micromachines (Basel)</title><description>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Cooling</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>heat transfer enhancement</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Numerical analysis</subject><subject>numerical simulation</subject><subject>Parameters</subject><subject>Pressure drop</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>single- and double-Layer microchannel heat sink</subject><subject>Temperature distribution</subject><subject>Thickness</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFTEQhhdRbKm98RcEvBFha76zuRFKW9vCUcFW8C5ks5NzctxNanZXOf--2Z6i1gwkw-SdZ_IxVfWa4BPGNH4_BMIIIQ0lz6pDihWtpZTfn__jH1TH47jFZSily_SyOmCyWMPpYZU-zwPk4GyPbqa526Hk0e0G8lACF3Fjo4MB4oRCRBbdhLjuoUY2dug8zW3xV3YHGX0KLidX1BF6dAV2WqQ_0O8wbdB58B7ywvga2vFV9cLbfoTjx_Wo-vbx4vbsql59ubw-O13VjpNmqjVQjzUlmgmmiHDQCNJ6JggHBYpZ3AotqRDUYWDOttBwyTvZYO-8V4qzo-p6z-2S3Zq7HAabdybZYB4CKa-NzVNwPRjSCMk4FD51vBW0lMXKyk5ZJh0lC-vDnnU3twN0rtwl2_4J9OlODBuzTr-MlloLrgvg7SMgp58zjJMZwuig722ENI-GKiYahYlapG_-k27TnGN5qkXFpSTqAXiyV61tuUCIPpW6rlgHQ3Apgg8lfqq40AwTokrCu31C-adxzOD_nJ5gs_SR-dtH7B7t5rb6</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Cao, Miaolong</creator><creator>Cao, Shi</creator><creator>Zhao, Jincheng</creator><creator>Zhu, Jiayi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221025</creationdate><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><author>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Cooling</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>heat transfer enhancement</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Numerical analysis</topic><topic>numerical simulation</topic><topic>Parameters</topic><topic>Pressure drop</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>single- and double-Layer microchannel heat sink</topic><topic>Temperature distribution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Miaolong</creatorcontrib><creatorcontrib>Cao, Shi</creatorcontrib><creatorcontrib>Zhao, Jincheng</creatorcontrib><creatorcontrib>Zhu, Jiayi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Miaolong</au><au>Cao, Shi</au><au>Zhao, Jincheng</au><au>Zhu, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-10-25</date><risdate>2022</risdate><volume>13</volume><issue>11</issue><spage>1821</spage><pages>1821-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363842</pmid><doi>10.3390/mi13111821</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2022-10, Vol.13 (11), p.1821
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214
source Publicly Available Content Database; PubMed Central
subjects Aluminum
Analysis
Cooling
Finite element method
Fluid flow
Heat conductivity
Heat sinks
Heat transfer
heat transfer enhancement
Mathematical models
Microchannels
Numerical analysis
numerical simulation
Parameters
Pressure drop
Reynolds number
Simulation
Simulation methods
single- and double-Layer microchannel heat sink
Temperature distribution
Thickness
title Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Thermal%20Enhancement%20in%20a%20Single-%20and%20Double-Layer%20Microchannel%20Heat%20Sink%20with%20Different%20Ribs&rft.jtitle=Micromachines%20(Basel)&rft.au=Cao,%20Miaolong&rft.date=2022-10-25&rft.volume=13&rft.issue=11&rft.spage=1821&rft.pages=1821-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13111821&rft_dat=%3Cgale_doaj_%3EA745930117%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734661749&rft_id=info:pmid/36363842&rft_galeid=A745930117&rfr_iscdi=true