Loading…
Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs
In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the micr...
Saved in:
Published in: | Micromachines (Basel) 2022-10, Vol.13 (11), p.1821 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743 |
container_end_page | |
container_issue | 11 |
container_start_page | 1821 |
container_title | Micromachines (Basel) |
container_volume | 13 |
creator | Cao, Miaolong Cao, Shi Zhao, Jincheng Zhu, Jiayi |
description | In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm. |
doi_str_mv | 10.3390/mi13111821 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745930117</galeid><doaj_id>oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214</doaj_id><sourcerecordid>A745930117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhdRbKm98RcEvBFha76zuRFKW9vCUcFW8C5ks5NzctxNanZXOf--2Z6i1gwkw-SdZ_IxVfWa4BPGNH4_BMIIIQ0lz6pDihWtpZTfn__jH1TH47jFZSily_SyOmCyWMPpYZU-zwPk4GyPbqa526Hk0e0G8lACF3Fjo4MB4oRCRBbdhLjuoUY2dug8zW3xV3YHGX0KLidX1BF6dAV2WqQ_0O8wbdB58B7ywvga2vFV9cLbfoTjx_Wo-vbx4vbsql59ubw-O13VjpNmqjVQjzUlmgmmiHDQCNJ6JggHBYpZ3AotqRDUYWDOttBwyTvZYO-8V4qzo-p6z-2S3Zq7HAabdybZYB4CKa-NzVNwPRjSCMk4FD51vBW0lMXKyk5ZJh0lC-vDnnU3twN0rtwl2_4J9OlODBuzTr-MlloLrgvg7SMgp58zjJMZwuig722ENI-GKiYahYlapG_-k27TnGN5qkXFpSTqAXiyV61tuUCIPpW6rlgHQ3Apgg8lfqq40AwTokrCu31C-adxzOD_nJ5gs_SR-dtH7B7t5rb6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734661749</pqid></control><display><type>article</type><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</creator><creatorcontrib>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</creatorcontrib><description>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13111821</identifier><identifier>PMID: 36363842</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Analysis ; Cooling ; Finite element method ; Fluid flow ; Heat conductivity ; Heat sinks ; Heat transfer ; heat transfer enhancement ; Mathematical models ; Microchannels ; Numerical analysis ; numerical simulation ; Parameters ; Pressure drop ; Reynolds number ; Simulation ; Simulation methods ; single- and double-Layer microchannel heat sink ; Temperature distribution ; Thickness</subject><ispartof>Micromachines (Basel), 2022-10, Vol.13 (11), p.1821</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</citedby><cites>FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734661749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734661749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Cao, Miaolong</creatorcontrib><creatorcontrib>Cao, Shi</creatorcontrib><creatorcontrib>Zhao, Jincheng</creatorcontrib><creatorcontrib>Zhu, Jiayi</creatorcontrib><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><title>Micromachines (Basel)</title><description>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Cooling</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>heat transfer enhancement</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Numerical analysis</subject><subject>numerical simulation</subject><subject>Parameters</subject><subject>Pressure drop</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>single- and double-Layer microchannel heat sink</subject><subject>Temperature distribution</subject><subject>Thickness</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFTEQhhdRbKm98RcEvBFha76zuRFKW9vCUcFW8C5ks5NzctxNanZXOf--2Z6i1gwkw-SdZ_IxVfWa4BPGNH4_BMIIIQ0lz6pDihWtpZTfn__jH1TH47jFZSily_SyOmCyWMPpYZU-zwPk4GyPbqa526Hk0e0G8lACF3Fjo4MB4oRCRBbdhLjuoUY2dug8zW3xV3YHGX0KLidX1BF6dAV2WqQ_0O8wbdB58B7ywvga2vFV9cLbfoTjx_Wo-vbx4vbsql59ubw-O13VjpNmqjVQjzUlmgmmiHDQCNJ6JggHBYpZ3AotqRDUYWDOttBwyTvZYO-8V4qzo-p6z-2S3Zq7HAabdybZYB4CKa-NzVNwPRjSCMk4FD51vBW0lMXKyk5ZJh0lC-vDnnU3twN0rtwl2_4J9OlODBuzTr-MlloLrgvg7SMgp58zjJMZwuig722ENI-GKiYahYlapG_-k27TnGN5qkXFpSTqAXiyV61tuUCIPpW6rlgHQ3Apgg8lfqq40AwTokrCu31C-adxzOD_nJ5gs_SR-dtH7B7t5rb6</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Cao, Miaolong</creator><creator>Cao, Shi</creator><creator>Zhao, Jincheng</creator><creator>Zhu, Jiayi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221025</creationdate><title>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</title><author>Cao, Miaolong ; Cao, Shi ; Zhao, Jincheng ; Zhu, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Cooling</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>heat transfer enhancement</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Numerical analysis</topic><topic>numerical simulation</topic><topic>Parameters</topic><topic>Pressure drop</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>single- and double-Layer microchannel heat sink</topic><topic>Temperature distribution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Miaolong</creatorcontrib><creatorcontrib>Cao, Shi</creatorcontrib><creatorcontrib>Zhao, Jincheng</creatorcontrib><creatorcontrib>Zhu, Jiayi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Miaolong</au><au>Cao, Shi</au><au>Zhao, Jincheng</au><au>Zhu, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-10-25</date><risdate>2022</risdate><volume>13</volume><issue>11</issue><spage>1821</spage><pages>1821-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2–0.3 mm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363842</pmid><doi>10.3390/mi13111821</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2022-10, Vol.13 (11), p.1821 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_185634e1bf2c4b5292107a6d7a36c214 |
source | Publicly Available Content Database; PubMed Central |
subjects | Aluminum Analysis Cooling Finite element method Fluid flow Heat conductivity Heat sinks Heat transfer heat transfer enhancement Mathematical models Microchannels Numerical analysis numerical simulation Parameters Pressure drop Reynolds number Simulation Simulation methods single- and double-Layer microchannel heat sink Temperature distribution Thickness |
title | Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Thermal%20Enhancement%20in%20a%20Single-%20and%20Double-Layer%20Microchannel%20Heat%20Sink%20with%20Different%20Ribs&rft.jtitle=Micromachines%20(Basel)&rft.au=Cao,%20Miaolong&rft.date=2022-10-25&rft.volume=13&rft.issue=11&rft.spage=1821&rft.pages=1821-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13111821&rft_dat=%3Cgale_doaj_%3EA745930117%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9e2f09219353715ce851bf3514e7e73a0b5962552c0e3cabe8464d680fcff7743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734661749&rft_id=info:pmid/36363842&rft_galeid=A745930117&rfr_iscdi=true |