Loading…
Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh
This paper mainly dealt with the technical and economic feasibility of an off-grid hybrid power generation system for a remote rural Turtuk village of Ladakh, located in the northern part of India. The study showed that the proposed configured renewable integrated hybrid system, using Hybrid Optimiz...
Saved in:
Published in: | Energies (Basel) 2022-12, Vol.15 (23), p.9126 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper mainly dealt with the technical and economic feasibility of an off-grid hybrid power generation system for a remote rural Turtuk village of Ladakh, located in the northern part of India. The study showed that the proposed configured renewable integrated hybrid system, using Hybrid Optimization of Multiple Energy Resources (HOMER) software, efficiently met the energy demand, exhibiting optimum performance with low investment. The proposed PV(115 kW)/Wind(1 kW)/Battery(164 strings of 6 V each)/DG(50 kW) hybrid system was a highly commendable, feasible solution preferred from a total of 133,156 available solutions resulting from HOMER simulations. The net present cost and energy cost of the proposed configuration were $278,176 and $0.29/kWh, respectively. The proposed hybrid configuration fulfilled local load, with 95.97% reduced dominant harmful carbon dioxide emission, as compared to the sole us of a diesel generator power supply system. The technical performance of the hybrid system was ensured, with advantages including the highest renewable penetration and least unmet load. Furthermore, the analysis exclusively evaluated the impact of the system’s economic parameters (namely, its expected inflation rate, nominal discount rate, and project lifetime) on the net present cost and cost of energy of the system using a noble single fix duo vary approach. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15239126 |