Loading…

Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures

With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2021-07, Vol.9 (7), p.726
Main Authors: Kim, Dong-Uk, Seo, Hyoung-Seock, Jang, Ho-Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53
cites cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53
container_end_page
container_issue 7
container_start_page 726
container_title Journal of marine science and engineering
container_volume 9
creator Kim, Dong-Uk
Seo, Hyoung-Seock
Jang, Ho-Yun
description With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.
doi_str_mv 10.3390/jmse9070726
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8</doaj_id><sourcerecordid>2554582995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</originalsourceid><addsrcrecordid>eNpNUctKAzEUHURB0a78gYBLqeYxeS21WBVaXLT7kMnctFPaSU0yi_69qRXp3dznOffAqap7gp8Y0_h5s0ugscSSiovqhmIpx4QRenlWX1ejlDa4hKKCYHFTuUUe2gMKPZqDW9u-c3aLXsHGrl-hRY7Qr_Ia2b5FU9tthwhoHlpIKHg0Cbt9SF0uI5shdnabkA-xdAUMR_DgckGku-rKlyWM_vJttZy-LScf49nX--fkZTZ2VNd57BWh1GsARj1vGq99W3RyYWtqPQiJ61pJ52ohuOcggevGEUkVB4al5-y2-jzRtsFuzD52OxsPJtjO_A5CXBkbc-e2YIjSjgGxjAlSUxDKNy22rZK1oAwaVbgeTlz7GL4HSNlswhD7ot5QzmuuqNbHj4-nKxdDShH8_1eCzdETc-YJ-wE4GX6a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554582995</pqid></control><display><type>article</type><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><source>Publicly Available Content Database</source><creator>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</creator><creatorcontrib>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</creatorcontrib><description>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse9070726</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum composites ; Bearing strength ; Carbon ; Carbon fiber reinforced plastics ; composite material ; Composite materials ; Composite structures ; Crack propagation ; Failure analysis ; failure mode ; Failure modes ; Geometry ; Glass fiber reinforced plastics ; Joints (timber) ; Metals ; Modes ; Offshore structures ; Ratios ; Strength ; Stress concentration ; Structural strength ; Tensile strength ; W/D effect</subject><ispartof>Journal of marine science and engineering, 2021-07, Vol.9 (7), p.726</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</citedby><cites>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</cites><orcidid>0000-0003-3057-2192 ; 0000-0001-5173-3667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554582995/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554582995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Kim, Dong-Uk</creatorcontrib><creatorcontrib>Seo, Hyoung-Seock</creatorcontrib><creatorcontrib>Jang, Ho-Yun</creatorcontrib><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><title>Journal of marine science and engineering</title><description>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</description><subject>Aluminum composites</subject><subject>Bearing strength</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>composite material</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Crack propagation</subject><subject>Failure analysis</subject><subject>failure mode</subject><subject>Failure modes</subject><subject>Geometry</subject><subject>Glass fiber reinforced plastics</subject><subject>Joints (timber)</subject><subject>Metals</subject><subject>Modes</subject><subject>Offshore structures</subject><subject>Ratios</subject><subject>Strength</subject><subject>Stress concentration</subject><subject>Structural strength</subject><subject>Tensile strength</subject><subject>W/D effect</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKAzEUHURB0a78gYBLqeYxeS21WBVaXLT7kMnctFPaSU0yi_69qRXp3dznOffAqap7gp8Y0_h5s0ugscSSiovqhmIpx4QRenlWX1ejlDa4hKKCYHFTuUUe2gMKPZqDW9u-c3aLXsHGrl-hRY7Qr_Ia2b5FU9tthwhoHlpIKHg0Cbt9SF0uI5shdnabkA-xdAUMR_DgckGku-rKlyWM_vJttZy-LScf49nX--fkZTZ2VNd57BWh1GsARj1vGq99W3RyYWtqPQiJ61pJ52ohuOcggevGEUkVB4al5-y2-jzRtsFuzD52OxsPJtjO_A5CXBkbc-e2YIjSjgGxjAlSUxDKNy22rZK1oAwaVbgeTlz7GL4HSNlswhD7ot5QzmuuqNbHj4-nKxdDShH8_1eCzdETc-YJ-wE4GX6a</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kim, Dong-Uk</creator><creator>Seo, Hyoung-Seock</creator><creator>Jang, Ho-Yun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3057-2192</orcidid><orcidid>https://orcid.org/0000-0001-5173-3667</orcidid></search><sort><creationdate>20210701</creationdate><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><author>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum composites</topic><topic>Bearing strength</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>composite material</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Crack propagation</topic><topic>Failure analysis</topic><topic>failure mode</topic><topic>Failure modes</topic><topic>Geometry</topic><topic>Glass fiber reinforced plastics</topic><topic>Joints (timber)</topic><topic>Metals</topic><topic>Modes</topic><topic>Offshore structures</topic><topic>Ratios</topic><topic>Strength</topic><topic>Stress concentration</topic><topic>Structural strength</topic><topic>Tensile strength</topic><topic>W/D effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong-Uk</creatorcontrib><creatorcontrib>Seo, Hyoung-Seock</creatorcontrib><creatorcontrib>Jang, Ho-Yun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong-Uk</au><au>Seo, Hyoung-Seock</au><au>Jang, Ho-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>726</spage><pages>726-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse9070726</doi><orcidid>https://orcid.org/0000-0003-3057-2192</orcidid><orcidid>https://orcid.org/0000-0001-5173-3667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-1312
ispartof Journal of marine science and engineering, 2021-07, Vol.9 (7), p.726
issn 2077-1312
2077-1312
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8
source Publicly Available Content Database
subjects Aluminum composites
Bearing strength
Carbon
Carbon fiber reinforced plastics
composite material
Composite materials
Composite structures
Crack propagation
Failure analysis
failure mode
Failure modes
Geometry
Glass fiber reinforced plastics
Joints (timber)
Metals
Modes
Offshore structures
Ratios
Strength
Stress concentration
Structural strength
Tensile strength
W/D effect
title Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Mechanical%20Bearing%20Strength%20and%20Failure%20Modes%20of%20Composite%20Materials%20for%20Marine%20Structures&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Kim,%20Dong-Uk&rft.date=2021-07-01&rft.volume=9&rft.issue=7&rft.spage=726&rft.pages=726-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse9070726&rft_dat=%3Cproquest_doaj_%3E2554582995%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554582995&rft_id=info:pmid/&rfr_iscdi=true