Loading…
Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures
With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically...
Saved in:
Published in: | Journal of marine science and engineering 2021-07, Vol.9 (7), p.726 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53 |
container_end_page | |
container_issue | 7 |
container_start_page | 726 |
container_title | Journal of marine science and engineering |
container_volume | 9 |
creator | Kim, Dong-Uk Seo, Hyoung-Seock Jang, Ho-Yun |
description | With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens. |
doi_str_mv | 10.3390/jmse9070726 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8</doaj_id><sourcerecordid>2554582995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</originalsourceid><addsrcrecordid>eNpNUctKAzEUHURB0a78gYBLqeYxeS21WBVaXLT7kMnctFPaSU0yi_69qRXp3dznOffAqap7gp8Y0_h5s0ugscSSiovqhmIpx4QRenlWX1ejlDa4hKKCYHFTuUUe2gMKPZqDW9u-c3aLXsHGrl-hRY7Qr_Ia2b5FU9tthwhoHlpIKHg0Cbt9SF0uI5shdnabkA-xdAUMR_DgckGku-rKlyWM_vJttZy-LScf49nX--fkZTZ2VNd57BWh1GsARj1vGq99W3RyYWtqPQiJ61pJ52ohuOcggevGEUkVB4al5-y2-jzRtsFuzD52OxsPJtjO_A5CXBkbc-e2YIjSjgGxjAlSUxDKNy22rZK1oAwaVbgeTlz7GL4HSNlswhD7ot5QzmuuqNbHj4-nKxdDShH8_1eCzdETc-YJ-wE4GX6a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554582995</pqid></control><display><type>article</type><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><source>Publicly Available Content Database</source><creator>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</creator><creatorcontrib>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</creatorcontrib><description>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse9070726</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum composites ; Bearing strength ; Carbon ; Carbon fiber reinforced plastics ; composite material ; Composite materials ; Composite structures ; Crack propagation ; Failure analysis ; failure mode ; Failure modes ; Geometry ; Glass fiber reinforced plastics ; Joints (timber) ; Metals ; Modes ; Offshore structures ; Ratios ; Strength ; Stress concentration ; Structural strength ; Tensile strength ; W/D effect</subject><ispartof>Journal of marine science and engineering, 2021-07, Vol.9 (7), p.726</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</citedby><cites>FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</cites><orcidid>0000-0003-3057-2192 ; 0000-0001-5173-3667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554582995/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554582995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Kim, Dong-Uk</creatorcontrib><creatorcontrib>Seo, Hyoung-Seock</creatorcontrib><creatorcontrib>Jang, Ho-Yun</creatorcontrib><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><title>Journal of marine science and engineering</title><description>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</description><subject>Aluminum composites</subject><subject>Bearing strength</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>composite material</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Crack propagation</subject><subject>Failure analysis</subject><subject>failure mode</subject><subject>Failure modes</subject><subject>Geometry</subject><subject>Glass fiber reinforced plastics</subject><subject>Joints (timber)</subject><subject>Metals</subject><subject>Modes</subject><subject>Offshore structures</subject><subject>Ratios</subject><subject>Strength</subject><subject>Stress concentration</subject><subject>Structural strength</subject><subject>Tensile strength</subject><subject>W/D effect</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKAzEUHURB0a78gYBLqeYxeS21WBVaXLT7kMnctFPaSU0yi_69qRXp3dznOffAqap7gp8Y0_h5s0ugscSSiovqhmIpx4QRenlWX1ejlDa4hKKCYHFTuUUe2gMKPZqDW9u-c3aLXsHGrl-hRY7Qr_Ia2b5FU9tthwhoHlpIKHg0Cbt9SF0uI5shdnabkA-xdAUMR_DgckGku-rKlyWM_vJttZy-LScf49nX--fkZTZ2VNd57BWh1GsARj1vGq99W3RyYWtqPQiJ61pJ52ohuOcggevGEUkVB4al5-y2-jzRtsFuzD52OxsPJtjO_A5CXBkbc-e2YIjSjgGxjAlSUxDKNy22rZK1oAwaVbgeTlz7GL4HSNlswhD7ot5QzmuuqNbHj4-nKxdDShH8_1eCzdETc-YJ-wE4GX6a</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kim, Dong-Uk</creator><creator>Seo, Hyoung-Seock</creator><creator>Jang, Ho-Yun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3057-2192</orcidid><orcidid>https://orcid.org/0000-0001-5173-3667</orcidid></search><sort><creationdate>20210701</creationdate><title>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</title><author>Kim, Dong-Uk ; Seo, Hyoung-Seock ; Jang, Ho-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum composites</topic><topic>Bearing strength</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>composite material</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Crack propagation</topic><topic>Failure analysis</topic><topic>failure mode</topic><topic>Failure modes</topic><topic>Geometry</topic><topic>Glass fiber reinforced plastics</topic><topic>Joints (timber)</topic><topic>Metals</topic><topic>Modes</topic><topic>Offshore structures</topic><topic>Ratios</topic><topic>Strength</topic><topic>Stress concentration</topic><topic>Structural strength</topic><topic>Tensile strength</topic><topic>W/D effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong-Uk</creatorcontrib><creatorcontrib>Seo, Hyoung-Seock</creatorcontrib><creatorcontrib>Jang, Ho-Yun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong-Uk</au><au>Seo, Hyoung-Seock</au><au>Jang, Ho-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>726</spage><pages>726-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse9070726</doi><orcidid>https://orcid.org/0000-0003-3057-2192</orcidid><orcidid>https://orcid.org/0000-0001-5173-3667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2021-07, Vol.9 (7), p.726 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_189c3e1a336142e68fbd0ad874623eb8 |
source | Publicly Available Content Database |
subjects | Aluminum composites Bearing strength Carbon Carbon fiber reinforced plastics composite material Composite materials Composite structures Crack propagation Failure analysis failure mode Failure modes Geometry Glass fiber reinforced plastics Joints (timber) Metals Modes Offshore structures Ratios Strength Stress concentration Structural strength Tensile strength W/D effect |
title | Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Mechanical%20Bearing%20Strength%20and%20Failure%20Modes%20of%20Composite%20Materials%20for%20Marine%20Structures&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Kim,%20Dong-Uk&rft.date=2021-07-01&rft.volume=9&rft.issue=7&rft.spage=726&rft.pages=726-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse9070726&rft_dat=%3Cproquest_doaj_%3E2554582995%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-f8122f9ee32f5bbf9fd00856a42afe6704487cc4665f5e7e59bc17285e307f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554582995&rft_id=info:pmid/&rfr_iscdi=true |