Loading…
Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications
Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are signifi...
Saved in:
Published in: | Nature communications 2022-03, Vol.13 (1), p.1388-1388, Article 1388 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23 |
container_end_page | 1388 |
container_issue | 1 |
container_start_page | 1388 |
container_title | Nature communications |
container_volume | 13 |
creator | Jia, Shi Lo, Mu-Chieh Zhang, Lu Ozolins, Oskars Udalcovs, Aleksejs Kong, Deming Pang, Xiaodan Guzman, Robinson Yu, Xianbin Xiao, Shilin Popov, Sergei Chen, Jiajia Carpintero, Guillermo Morioka, Toshio Hu, Hao Oxenløwe, Leif K. |
description | Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits
−1
net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters.
A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G. |
doi_str_mv | 10.1038/s41467-022-29049-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3</doaj_id><sourcerecordid>2640584666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEolXpH2CBIrFBQgG_Y2-QqvIaqRIbYGs59p3EQyYebKdV4c_jeVA6LCAbR77fPb4-PlX1FKNXGFH5OjHMRNsgQhqiEFMNeVCdEsRwg1tCH977P6nOU1qh8lGFJWOPqxPKiRKiRafVz8WUoY8mg6vdbMZmNAlivRlCDpO3tR38pl6GWA--H5rNHH2-ra2J0ReqhwlKqw9TDZPpRj_19TzmaJYm5TqX2gAx_6hvfIQRUqptWK_nIrvrSU-qR0szJjg_rGfVl_fvPl9-bK4-fVhcXlw1VkiUmw6DYwgr6TohSCdBoJZjSjhIbp1VrRUKIwQO-FJBaxRShEsG2FpoiSP0rFrsdV0wK72Jfm3irQ7G691GiL02MXs7gsbSMkrBEWkVM-A6h0FwwyzlHWCgRevlXivdwGbujtTe-q8XO7XoNZdK8EI3_6e_5UFTjLjChX-z5wu8BmdhKmaOR23HlckPug_XWirSUr4d78VBIIbvM6Ss1z5ZGEczQZiTJoIhSqQk29me_4Wuwhyn8hA7qjgohCgU2VM2hpQiLO-GwUhvg6j3QdQliHoXRL01_Nn9a9y1_I5dAejBl1Kaeoh_zv6H7C_ZY-y5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640584666</pqid></control><display><type>article</type><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</creator><creatorcontrib>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</creatorcontrib><description>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits
−1
net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters.
A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29049-2</identifier><identifier>PMID: 35296670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/624/1075/1079 ; 639/624/1075/187 ; Antennas ; Bandwidths ; Energy consumption ; Energy efficiency ; Frequency locking ; Humanities and Social Sciences ; Injection ; Integrated circuits ; Lasers ; multidisciplinary ; Photodiodes ; Photonics ; Purity ; Science ; Science (multidisciplinary) ; Semiconductors ; Signal processing ; Transmitters ; Wireless communications ; Wireless networks</subject><ispartof>Nature communications, 2022-03, Vol.13 (1), p.1388-1388, Article 1388</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</citedby><cites>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</cites><orcidid>0000-0001-9676-3763 ; 0000-0002-8859-0986 ; 0000-0003-4906-1704 ; 0000-0001-6665-3977 ; 0000-0001-8819-9197 ; 0000-0002-3627-8085 ; 0000-0001-9839-7488 ; 0000-0003-2757-5480 ; 0000-0001-6013-3639 ; 0000-0001-6552-4081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2640584666/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2640584666?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310591$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-58965$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Shi</creatorcontrib><creatorcontrib>Lo, Mu-Chieh</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Ozolins, Oskars</creatorcontrib><creatorcontrib>Udalcovs, Aleksejs</creatorcontrib><creatorcontrib>Kong, Deming</creatorcontrib><creatorcontrib>Pang, Xiaodan</creatorcontrib><creatorcontrib>Guzman, Robinson</creatorcontrib><creatorcontrib>Yu, Xianbin</creatorcontrib><creatorcontrib>Xiao, Shilin</creatorcontrib><creatorcontrib>Popov, Sergei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Carpintero, Guillermo</creatorcontrib><creatorcontrib>Morioka, Toshio</creatorcontrib><creatorcontrib>Hu, Hao</creatorcontrib><creatorcontrib>Oxenløwe, Leif K.</creatorcontrib><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits
−1
net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters.
A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</description><subject>639/624/1020</subject><subject>639/624/1075/1079</subject><subject>639/624/1075/187</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Frequency locking</subject><subject>Humanities and Social Sciences</subject><subject>Injection</subject><subject>Integrated circuits</subject><subject>Lasers</subject><subject>multidisciplinary</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Purity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Signal processing</subject><subject>Transmitters</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEolXpH2CBIrFBQgG_Y2-QqvIaqRIbYGs59p3EQyYebKdV4c_jeVA6LCAbR77fPb4-PlX1FKNXGFH5OjHMRNsgQhqiEFMNeVCdEsRwg1tCH977P6nOU1qh8lGFJWOPqxPKiRKiRafVz8WUoY8mg6vdbMZmNAlivRlCDpO3tR38pl6GWA--H5rNHH2-ra2J0ReqhwlKqw9TDZPpRj_19TzmaJYm5TqX2gAx_6hvfIQRUqptWK_nIrvrSU-qR0szJjg_rGfVl_fvPl9-bK4-fVhcXlw1VkiUmw6DYwgr6TohSCdBoJZjSjhIbp1VrRUKIwQO-FJBaxRShEsG2FpoiSP0rFrsdV0wK72Jfm3irQ7G691GiL02MXs7gsbSMkrBEWkVM-A6h0FwwyzlHWCgRevlXivdwGbujtTe-q8XO7XoNZdK8EI3_6e_5UFTjLjChX-z5wu8BmdhKmaOR23HlckPug_XWirSUr4d78VBIIbvM6Ss1z5ZGEczQZiTJoIhSqQk29me_4Wuwhyn8hA7qjgohCgU2VM2hpQiLO-GwUhvg6j3QdQliHoXRL01_Nn9a9y1_I5dAejBl1Kaeoh_zv6H7C_ZY-y5</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Jia, Shi</creator><creator>Lo, Mu-Chieh</creator><creator>Zhang, Lu</creator><creator>Ozolins, Oskars</creator><creator>Udalcovs, Aleksejs</creator><creator>Kong, Deming</creator><creator>Pang, Xiaodan</creator><creator>Guzman, Robinson</creator><creator>Yu, Xianbin</creator><creator>Xiao, Shilin</creator><creator>Popov, Sergei</creator><creator>Chen, Jiajia</creator><creator>Carpintero, Guillermo</creator><creator>Morioka, Toshio</creator><creator>Hu, Hao</creator><creator>Oxenløwe, Leif K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9676-3763</orcidid><orcidid>https://orcid.org/0000-0002-8859-0986</orcidid><orcidid>https://orcid.org/0000-0003-4906-1704</orcidid><orcidid>https://orcid.org/0000-0001-6665-3977</orcidid><orcidid>https://orcid.org/0000-0001-8819-9197</orcidid><orcidid>https://orcid.org/0000-0002-3627-8085</orcidid><orcidid>https://orcid.org/0000-0001-9839-7488</orcidid><orcidid>https://orcid.org/0000-0003-2757-5480</orcidid><orcidid>https://orcid.org/0000-0001-6013-3639</orcidid><orcidid>https://orcid.org/0000-0001-6552-4081</orcidid></search><sort><creationdate>20220316</creationdate><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><author>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1020</topic><topic>639/624/1075/1079</topic><topic>639/624/1075/187</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Frequency locking</topic><topic>Humanities and Social Sciences</topic><topic>Injection</topic><topic>Integrated circuits</topic><topic>Lasers</topic><topic>multidisciplinary</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Purity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Signal processing</topic><topic>Transmitters</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Shi</creatorcontrib><creatorcontrib>Lo, Mu-Chieh</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Ozolins, Oskars</creatorcontrib><creatorcontrib>Udalcovs, Aleksejs</creatorcontrib><creatorcontrib>Kong, Deming</creatorcontrib><creatorcontrib>Pang, Xiaodan</creatorcontrib><creatorcontrib>Guzman, Robinson</creatorcontrib><creatorcontrib>Yu, Xianbin</creatorcontrib><creatorcontrib>Xiao, Shilin</creatorcontrib><creatorcontrib>Popov, Sergei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Carpintero, Guillermo</creatorcontrib><creatorcontrib>Morioka, Toshio</creatorcontrib><creatorcontrib>Hu, Hao</creatorcontrib><creatorcontrib>Oxenløwe, Leif K.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Shi</au><au>Lo, Mu-Chieh</au><au>Zhang, Lu</au><au>Ozolins, Oskars</au><au>Udalcovs, Aleksejs</au><au>Kong, Deming</au><au>Pang, Xiaodan</au><au>Guzman, Robinson</au><au>Yu, Xianbin</au><au>Xiao, Shilin</au><au>Popov, Sergei</au><au>Chen, Jiajia</au><au>Carpintero, Guillermo</au><au>Morioka, Toshio</au><au>Hu, Hao</au><au>Oxenløwe, Leif K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1388</spage><epage>1388</epage><pages>1388-1388</pages><artnum>1388</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits
−1
net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters.
A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35296670</pmid><doi>10.1038/s41467-022-29049-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9676-3763</orcidid><orcidid>https://orcid.org/0000-0002-8859-0986</orcidid><orcidid>https://orcid.org/0000-0003-4906-1704</orcidid><orcidid>https://orcid.org/0000-0001-6665-3977</orcidid><orcidid>https://orcid.org/0000-0001-8819-9197</orcidid><orcidid>https://orcid.org/0000-0002-3627-8085</orcidid><orcidid>https://orcid.org/0000-0001-9839-7488</orcidid><orcidid>https://orcid.org/0000-0003-2757-5480</orcidid><orcidid>https://orcid.org/0000-0001-6013-3639</orcidid><orcidid>https://orcid.org/0000-0001-6552-4081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-03, Vol.13 (1), p.1388-1388, Article 1388 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1020 639/624/1075/1079 639/624/1075/187 Antennas Bandwidths Energy consumption Energy efficiency Frequency locking Humanities and Social Sciences Injection Integrated circuits Lasers multidisciplinary Photodiodes Photonics Purity Science Science (multidisciplinary) Semiconductors Signal processing Transmitters Wireless communications Wireless networks |
title | Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20dual-laser%20photonic%20chip%20for%20high-purity%20carrier%20generation%20enabling%20ultrafast%20terahertz%20wireless%20communications&rft.jtitle=Nature%20communications&rft.au=Jia,%20Shi&rft.date=2022-03-16&rft.volume=13&rft.issue=1&rft.spage=1388&rft.epage=1388&rft.pages=1388-1388&rft.artnum=1388&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29049-2&rft_dat=%3Cproquest_doaj_%3E2640584666%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640584666&rft_id=info:pmid/35296670&rfr_iscdi=true |