Loading…

Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications

Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are signifi...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-03, Vol.13 (1), p.1388-1388, Article 1388
Main Authors: Jia, Shi, Lo, Mu-Chieh, Zhang, Lu, Ozolins, Oskars, Udalcovs, Aleksejs, Kong, Deming, Pang, Xiaodan, Guzman, Robinson, Yu, Xianbin, Xiao, Shilin, Popov, Sergei, Chen, Jiajia, Carpintero, Guillermo, Morioka, Toshio, Hu, Hao, Oxenløwe, Leif K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23
cites cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23
container_end_page 1388
container_issue 1
container_start_page 1388
container_title Nature communications
container_volume 13
creator Jia, Shi
Lo, Mu-Chieh
Zhang, Lu
Ozolins, Oskars
Udalcovs, Aleksejs
Kong, Deming
Pang, Xiaodan
Guzman, Robinson
Yu, Xianbin
Xiao, Shilin
Popov, Sergei
Chen, Jiajia
Carpintero, Guillermo
Morioka, Toshio
Hu, Hao
Oxenløwe, Leif K.
description Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits −1 net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters. A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.
doi_str_mv 10.1038/s41467-022-29049-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3</doaj_id><sourcerecordid>2640584666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEolXpH2CBIrFBQgG_Y2-QqvIaqRIbYGs59p3EQyYebKdV4c_jeVA6LCAbR77fPb4-PlX1FKNXGFH5OjHMRNsgQhqiEFMNeVCdEsRwg1tCH977P6nOU1qh8lGFJWOPqxPKiRKiRafVz8WUoY8mg6vdbMZmNAlivRlCDpO3tR38pl6GWA--H5rNHH2-ra2J0ReqhwlKqw9TDZPpRj_19TzmaJYm5TqX2gAx_6hvfIQRUqptWK_nIrvrSU-qR0szJjg_rGfVl_fvPl9-bK4-fVhcXlw1VkiUmw6DYwgr6TohSCdBoJZjSjhIbp1VrRUKIwQO-FJBaxRShEsG2FpoiSP0rFrsdV0wK72Jfm3irQ7G691GiL02MXs7gsbSMkrBEWkVM-A6h0FwwyzlHWCgRevlXivdwGbujtTe-q8XO7XoNZdK8EI3_6e_5UFTjLjChX-z5wu8BmdhKmaOR23HlckPug_XWirSUr4d78VBIIbvM6Ss1z5ZGEczQZiTJoIhSqQk29me_4Wuwhyn8hA7qjgohCgU2VM2hpQiLO-GwUhvg6j3QdQliHoXRL01_Nn9a9y1_I5dAejBl1Kaeoh_zv6H7C_ZY-y5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640584666</pqid></control><display><type>article</type><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</creator><creatorcontrib>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</creatorcontrib><description>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits −1 net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters. A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29049-2</identifier><identifier>PMID: 35296670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/624/1075/1079 ; 639/624/1075/187 ; Antennas ; Bandwidths ; Energy consumption ; Energy efficiency ; Frequency locking ; Humanities and Social Sciences ; Injection ; Integrated circuits ; Lasers ; multidisciplinary ; Photodiodes ; Photonics ; Purity ; Science ; Science (multidisciplinary) ; Semiconductors ; Signal processing ; Transmitters ; Wireless communications ; Wireless networks</subject><ispartof>Nature communications, 2022-03, Vol.13 (1), p.1388-1388, Article 1388</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</citedby><cites>FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</cites><orcidid>0000-0001-9676-3763 ; 0000-0002-8859-0986 ; 0000-0003-4906-1704 ; 0000-0001-6665-3977 ; 0000-0001-8819-9197 ; 0000-0002-3627-8085 ; 0000-0001-9839-7488 ; 0000-0003-2757-5480 ; 0000-0001-6013-3639 ; 0000-0001-6552-4081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2640584666/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2640584666?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310591$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-58965$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Shi</creatorcontrib><creatorcontrib>Lo, Mu-Chieh</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Ozolins, Oskars</creatorcontrib><creatorcontrib>Udalcovs, Aleksejs</creatorcontrib><creatorcontrib>Kong, Deming</creatorcontrib><creatorcontrib>Pang, Xiaodan</creatorcontrib><creatorcontrib>Guzman, Robinson</creatorcontrib><creatorcontrib>Yu, Xianbin</creatorcontrib><creatorcontrib>Xiao, Shilin</creatorcontrib><creatorcontrib>Popov, Sergei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Carpintero, Guillermo</creatorcontrib><creatorcontrib>Morioka, Toshio</creatorcontrib><creatorcontrib>Hu, Hao</creatorcontrib><creatorcontrib>Oxenløwe, Leif K.</creatorcontrib><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits −1 net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters. A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</description><subject>639/624/1020</subject><subject>639/624/1075/1079</subject><subject>639/624/1075/187</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Frequency locking</subject><subject>Humanities and Social Sciences</subject><subject>Injection</subject><subject>Integrated circuits</subject><subject>Lasers</subject><subject>multidisciplinary</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Purity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Signal processing</subject><subject>Transmitters</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEolXpH2CBIrFBQgG_Y2-QqvIaqRIbYGs59p3EQyYebKdV4c_jeVA6LCAbR77fPb4-PlX1FKNXGFH5OjHMRNsgQhqiEFMNeVCdEsRwg1tCH977P6nOU1qh8lGFJWOPqxPKiRKiRafVz8WUoY8mg6vdbMZmNAlivRlCDpO3tR38pl6GWA--H5rNHH2-ra2J0ReqhwlKqw9TDZPpRj_19TzmaJYm5TqX2gAx_6hvfIQRUqptWK_nIrvrSU-qR0szJjg_rGfVl_fvPl9-bK4-fVhcXlw1VkiUmw6DYwgr6TohSCdBoJZjSjhIbp1VrRUKIwQO-FJBaxRShEsG2FpoiSP0rFrsdV0wK72Jfm3irQ7G691GiL02MXs7gsbSMkrBEWkVM-A6h0FwwyzlHWCgRevlXivdwGbujtTe-q8XO7XoNZdK8EI3_6e_5UFTjLjChX-z5wu8BmdhKmaOR23HlckPug_XWirSUr4d78VBIIbvM6Ss1z5ZGEczQZiTJoIhSqQk29me_4Wuwhyn8hA7qjgohCgU2VM2hpQiLO-GwUhvg6j3QdQliHoXRL01_Nn9a9y1_I5dAejBl1Kaeoh_zv6H7C_ZY-y5</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Jia, Shi</creator><creator>Lo, Mu-Chieh</creator><creator>Zhang, Lu</creator><creator>Ozolins, Oskars</creator><creator>Udalcovs, Aleksejs</creator><creator>Kong, Deming</creator><creator>Pang, Xiaodan</creator><creator>Guzman, Robinson</creator><creator>Yu, Xianbin</creator><creator>Xiao, Shilin</creator><creator>Popov, Sergei</creator><creator>Chen, Jiajia</creator><creator>Carpintero, Guillermo</creator><creator>Morioka, Toshio</creator><creator>Hu, Hao</creator><creator>Oxenløwe, Leif K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9676-3763</orcidid><orcidid>https://orcid.org/0000-0002-8859-0986</orcidid><orcidid>https://orcid.org/0000-0003-4906-1704</orcidid><orcidid>https://orcid.org/0000-0001-6665-3977</orcidid><orcidid>https://orcid.org/0000-0001-8819-9197</orcidid><orcidid>https://orcid.org/0000-0002-3627-8085</orcidid><orcidid>https://orcid.org/0000-0001-9839-7488</orcidid><orcidid>https://orcid.org/0000-0003-2757-5480</orcidid><orcidid>https://orcid.org/0000-0001-6013-3639</orcidid><orcidid>https://orcid.org/0000-0001-6552-4081</orcidid></search><sort><creationdate>20220316</creationdate><title>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</title><author>Jia, Shi ; Lo, Mu-Chieh ; Zhang, Lu ; Ozolins, Oskars ; Udalcovs, Aleksejs ; Kong, Deming ; Pang, Xiaodan ; Guzman, Robinson ; Yu, Xianbin ; Xiao, Shilin ; Popov, Sergei ; Chen, Jiajia ; Carpintero, Guillermo ; Morioka, Toshio ; Hu, Hao ; Oxenløwe, Leif K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1020</topic><topic>639/624/1075/1079</topic><topic>639/624/1075/187</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Frequency locking</topic><topic>Humanities and Social Sciences</topic><topic>Injection</topic><topic>Integrated circuits</topic><topic>Lasers</topic><topic>multidisciplinary</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Purity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Signal processing</topic><topic>Transmitters</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Shi</creatorcontrib><creatorcontrib>Lo, Mu-Chieh</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Ozolins, Oskars</creatorcontrib><creatorcontrib>Udalcovs, Aleksejs</creatorcontrib><creatorcontrib>Kong, Deming</creatorcontrib><creatorcontrib>Pang, Xiaodan</creatorcontrib><creatorcontrib>Guzman, Robinson</creatorcontrib><creatorcontrib>Yu, Xianbin</creatorcontrib><creatorcontrib>Xiao, Shilin</creatorcontrib><creatorcontrib>Popov, Sergei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Carpintero, Guillermo</creatorcontrib><creatorcontrib>Morioka, Toshio</creatorcontrib><creatorcontrib>Hu, Hao</creatorcontrib><creatorcontrib>Oxenløwe, Leif K.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Shi</au><au>Lo, Mu-Chieh</au><au>Zhang, Lu</au><au>Ozolins, Oskars</au><au>Udalcovs, Aleksejs</au><au>Kong, Deming</au><au>Pang, Xiaodan</au><au>Guzman, Robinson</au><au>Yu, Xianbin</au><au>Xiao, Shilin</au><au>Popov, Sergei</au><au>Chen, Jiajia</au><au>Carpintero, Guillermo</au><au>Morioka, Toshio</au><au>Hu, Hao</au><au>Oxenløwe, Leif K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1388</spage><epage>1388</epage><pages>1388-1388</pages><artnum>1388</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0–1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits −1 net rate signal over a 10.7-m distance with −24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters. A photonic Terahertz source based on injection-locking an integrated dual-laser chip generates and transmits a 131 Gbps THz signal over 10.7-m distance, showing great potential towards fully integrated and energy-efficient THz transmitters for 6G.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35296670</pmid><doi>10.1038/s41467-022-29049-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9676-3763</orcidid><orcidid>https://orcid.org/0000-0002-8859-0986</orcidid><orcidid>https://orcid.org/0000-0003-4906-1704</orcidid><orcidid>https://orcid.org/0000-0001-6665-3977</orcidid><orcidid>https://orcid.org/0000-0001-8819-9197</orcidid><orcidid>https://orcid.org/0000-0002-3627-8085</orcidid><orcidid>https://orcid.org/0000-0001-9839-7488</orcidid><orcidid>https://orcid.org/0000-0003-2757-5480</orcidid><orcidid>https://orcid.org/0000-0001-6013-3639</orcidid><orcidid>https://orcid.org/0000-0001-6552-4081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-03, Vol.13 (1), p.1388-1388, Article 1388
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_18c433ed28c94aedbd1e65a4c35be1e3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1020
639/624/1075/1079
639/624/1075/187
Antennas
Bandwidths
Energy consumption
Energy efficiency
Frequency locking
Humanities and Social Sciences
Injection
Integrated circuits
Lasers
multidisciplinary
Photodiodes
Photonics
Purity
Science
Science (multidisciplinary)
Semiconductors
Signal processing
Transmitters
Wireless communications
Wireless networks
title Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20dual-laser%20photonic%20chip%20for%20high-purity%20carrier%20generation%20enabling%20ultrafast%20terahertz%20wireless%20communications&rft.jtitle=Nature%20communications&rft.au=Jia,%20Shi&rft.date=2022-03-16&rft.volume=13&rft.issue=1&rft.spage=1388&rft.epage=1388&rft.pages=1388-1388&rft.artnum=1388&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29049-2&rft_dat=%3Cproquest_doaj_%3E2640584666%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c680t-b1ed40198db662b8e60751325e85cdc97c69100ede5f9e7a9092584e1cce72d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640584666&rft_id=info:pmid/35296670&rfr_iscdi=true