Loading…
The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens
Quaternary ammonium salts (QAS) commonly occur as active substances in disinfectants. QAS have the important property of coating abiotic surfaces, which prevents adhesion of microorganisms, thus inhibiting biofilm formation. In this study, a group of nine monomeric QAS, differing in the structure an...
Saved in:
Published in: | Scientific reports 2022-12, Vol.12 (1), p.21799-18, Article 21799 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quaternary ammonium salts (QAS) commonly occur as active substances in disinfectants. QAS have the important property of coating abiotic surfaces, which prevents adhesion of microorganisms, thus inhibiting biofilm formation. In this study, a group of nine monomeric QAS, differing in the structure and length of the aliphatic chain (C12, C14, C16) and the counterion (methylcarbonate, acetate, bromide), were investigated. The study included an analysis of their action against planktonic forms as well as bacterial biofilms. The compounds were tested for their anti-adhesion properties on stainless steel, polystyrene, silicone and glass surfaces. Moreover, mutagenicity analysis and evaluation of hemolytic properties were performed. It was found that compounds with 16-carbon hydrophobic chains were the most promising against both planktonic forms and biofilms. Tested surfactants (C12, C14, C16) showed anti-adhesion activity but it was dependent on the type of the surface and strain used. The tested compounds at MIC concentrations did not cause hemolysis of sheep blood cells. The type of counterion was not as significant for the activity of the compound as the length of the hydrophobic aliphatic chain. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-24760-y |