Loading…
In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths
The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory throug...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.447 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743 |
container_end_page | |
container_issue | 2 |
container_start_page | 447 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Zeitoun, Reem Vandergeest, Mark Vasava, Hiteshkumar Bhogilal Machado, Pedro Vitor Ferrari Jordan, Sean Parkin, Gary Wagner-Riddle, Claudia Biswas, Asim |
description | The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g., MPS-6) principles. Parametric models were used to quantify θ-ψ relationships at various depths and were compared to laboratory-measured SWRC. The results of the study show that combining TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean difference of -0.03 to 0.23 m
m
between the modeled data and laboratory data, which could be caused by the sensors' lack of site-specific calibration or possible air entrapment of field soil. However, consistent trends (with magnitude differences) indicated the potential to use these sensors in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming resource-intensive laboratory measurements. |
doi_str_mv | 10.3390/s21020447 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18e2fa529be24ffe861162ca51eaa7e9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18e2fa529be24ffe861162ca51eaa7e9</doaj_id><sourcerecordid>2477872795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhleIin7AgT-ALHGBw1J_23tBQmkLkSJVIiCOlnd33Dps1qntrdR_j5OUqO1lPBq_88yMPVX1nuAvjDX4PFGCKeZcvapOCKe81pTi10_84-o0pRXGlDGm31THjHEmKCYn1d_5WC99ntBlyn5tsw8jCg4tgx_QH5shop-QYdzFZ1O8B-RHtPRDRotg18iO_c55QMutu01LyGZ04Z2DWPL2pAvY5Nv0tjpydkjw7vE8q35fXf6a_agX19_ns2-LuuOyyTWwzoHE0jENimuMCe-kpX1PpZakYa2A3opiRUvAdcJh2RYDlrVME8XZWTXfc_tgV2YTy1zxwQTrzS4Q4o2xMftuAEM0UGcFbVqgvLRcChBJOysIWKugKayve9ZmatfQd2WkaIdn0Oc3o781N-HeKE2lUKQAPj0CYribIGWz9qmDYbAjhCkZypUSWGmuivTjC-kqTHEsT7VTaUVVI4rq817VxZBSBHdohmCzXQdzWIei_fC0-4Py__-zf9lorzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477872795</pqid></control><display><type>article</type><title>In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zeitoun, Reem ; Vandergeest, Mark ; Vasava, Hiteshkumar Bhogilal ; Machado, Pedro Vitor Ferrari ; Jordan, Sean ; Parkin, Gary ; Wagner-Riddle, Claudia ; Biswas, Asim</creator><creatorcontrib>Zeitoun, Reem ; Vandergeest, Mark ; Vasava, Hiteshkumar Bhogilal ; Machado, Pedro Vitor Ferrari ; Jordan, Sean ; Parkin, Gary ; Wagner-Riddle, Claudia ; Biswas, Asim</creatorcontrib><description>The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g., MPS-6) principles. Parametric models were used to quantify θ-ψ relationships at various depths and were compared to laboratory-measured SWRC. The results of the study show that combining TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean difference of -0.03 to 0.23 m
m
between the modeled data and laboratory data, which could be caused by the sensors' lack of site-specific calibration or possible air entrapment of field soil. However, consistent trends (with magnitude differences) indicated the potential to use these sensors in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming resource-intensive laboratory measurements.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21020447</identifier><identifier>PMID: 33435201</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Efficiency ; Entrapment ; field capacity ; Groundwater recharge ; Hydraulics ; Hydrology ; Irrigation ; Laboratories ; Loam soils ; matric potential ; Methods ; parametric models ; Parametric statistics ; permanent wilting ; Scheduling ; Sensors ; Silt loam ; Soil sciences ; soil water content ; Soil water storage ; Water measurement ; Water shortages</subject><ispartof>Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.447</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743</citedby><cites>FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743</cites><orcidid>0000-0003-0801-3546 ; 0000-0003-4176-4421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2477872795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2477872795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33435201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeitoun, Reem</creatorcontrib><creatorcontrib>Vandergeest, Mark</creatorcontrib><creatorcontrib>Vasava, Hiteshkumar Bhogilal</creatorcontrib><creatorcontrib>Machado, Pedro Vitor Ferrari</creatorcontrib><creatorcontrib>Jordan, Sean</creatorcontrib><creatorcontrib>Parkin, Gary</creatorcontrib><creatorcontrib>Wagner-Riddle, Claudia</creatorcontrib><creatorcontrib>Biswas, Asim</creatorcontrib><title>In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g., MPS-6) principles. Parametric models were used to quantify θ-ψ relationships at various depths and were compared to laboratory-measured SWRC. The results of the study show that combining TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean difference of -0.03 to 0.23 m
m
between the modeled data and laboratory data, which could be caused by the sensors' lack of site-specific calibration or possible air entrapment of field soil. However, consistent trends (with magnitude differences) indicated the potential to use these sensors in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming resource-intensive laboratory measurements.</description><subject>Efficiency</subject><subject>Entrapment</subject><subject>field capacity</subject><subject>Groundwater recharge</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Irrigation</subject><subject>Laboratories</subject><subject>Loam soils</subject><subject>matric potential</subject><subject>Methods</subject><subject>parametric models</subject><subject>Parametric statistics</subject><subject>permanent wilting</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Silt loam</subject><subject>Soil sciences</subject><subject>soil water content</subject><subject>Soil water storage</subject><subject>Water measurement</subject><subject>Water shortages</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhleIin7AgT-ALHGBw1J_23tBQmkLkSJVIiCOlnd33Dps1qntrdR_j5OUqO1lPBq_88yMPVX1nuAvjDX4PFGCKeZcvapOCKe81pTi10_84-o0pRXGlDGm31THjHEmKCYn1d_5WC99ntBlyn5tsw8jCg4tgx_QH5shop-QYdzFZ1O8B-RHtPRDRotg18iO_c55QMutu01LyGZ04Z2DWPL2pAvY5Nv0tjpydkjw7vE8q35fXf6a_agX19_ns2-LuuOyyTWwzoHE0jENimuMCe-kpX1PpZakYa2A3opiRUvAdcJh2RYDlrVME8XZWTXfc_tgV2YTy1zxwQTrzS4Q4o2xMftuAEM0UGcFbVqgvLRcChBJOysIWKugKayve9ZmatfQd2WkaIdn0Oc3o781N-HeKE2lUKQAPj0CYribIGWz9qmDYbAjhCkZypUSWGmuivTjC-kqTHEsT7VTaUVVI4rq817VxZBSBHdohmCzXQdzWIei_fC0-4Py__-zf9lorzA</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Zeitoun, Reem</creator><creator>Vandergeest, Mark</creator><creator>Vasava, Hiteshkumar Bhogilal</creator><creator>Machado, Pedro Vitor Ferrari</creator><creator>Jordan, Sean</creator><creator>Parkin, Gary</creator><creator>Wagner-Riddle, Claudia</creator><creator>Biswas, Asim</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0801-3546</orcidid><orcidid>https://orcid.org/0000-0003-4176-4421</orcidid></search><sort><creationdate>20210110</creationdate><title>In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths</title><author>Zeitoun, Reem ; Vandergeest, Mark ; Vasava, Hiteshkumar Bhogilal ; Machado, Pedro Vitor Ferrari ; Jordan, Sean ; Parkin, Gary ; Wagner-Riddle, Claudia ; Biswas, Asim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Efficiency</topic><topic>Entrapment</topic><topic>field capacity</topic><topic>Groundwater recharge</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Irrigation</topic><topic>Laboratories</topic><topic>Loam soils</topic><topic>matric potential</topic><topic>Methods</topic><topic>parametric models</topic><topic>Parametric statistics</topic><topic>permanent wilting</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Silt loam</topic><topic>Soil sciences</topic><topic>soil water content</topic><topic>Soil water storage</topic><topic>Water measurement</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeitoun, Reem</creatorcontrib><creatorcontrib>Vandergeest, Mark</creatorcontrib><creatorcontrib>Vasava, Hiteshkumar Bhogilal</creatorcontrib><creatorcontrib>Machado, Pedro Vitor Ferrari</creatorcontrib><creatorcontrib>Jordan, Sean</creatorcontrib><creatorcontrib>Parkin, Gary</creatorcontrib><creatorcontrib>Wagner-Riddle, Claudia</creatorcontrib><creatorcontrib>Biswas, Asim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeitoun, Reem</au><au>Vandergeest, Mark</au><au>Vasava, Hiteshkumar Bhogilal</au><au>Machado, Pedro Vitor Ferrari</au><au>Jordan, Sean</au><au>Parkin, Gary</au><au>Wagner-Riddle, Claudia</au><au>Biswas, Asim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-01-10</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>447</spage><pages>447-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g., MPS-6) principles. Parametric models were used to quantify θ-ψ relationships at various depths and were compared to laboratory-measured SWRC. The results of the study show that combining TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean difference of -0.03 to 0.23 m
m
between the modeled data and laboratory data, which could be caused by the sensors' lack of site-specific calibration or possible air entrapment of field soil. However, consistent trends (with magnitude differences) indicated the potential to use these sensors in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming resource-intensive laboratory measurements.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33435201</pmid><doi>10.3390/s21020447</doi><orcidid>https://orcid.org/0000-0003-0801-3546</orcidid><orcidid>https://orcid.org/0000-0003-4176-4421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.447 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_18e2fa529be24ffe861162ca51eaa7e9 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Efficiency Entrapment field capacity Groundwater recharge Hydraulics Hydrology Irrigation Laboratories Loam soils matric potential Methods parametric models Parametric statistics permanent wilting Scheduling Sensors Silt loam Soil sciences soil water content Soil water storage Water measurement Water shortages |
title | In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Estimation%20of%20Soil%20Water%20Retention%20Curve%20in%20Silt%20Loam%20and%20Loamy%20Sand%20Soils%20at%20Different%20Soil%20Depths&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zeitoun,%20Reem&rft.date=2021-01-10&rft.volume=21&rft.issue=2&rft.spage=447&rft.pages=447-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21020447&rft_dat=%3Cproquest_doaj_%3E2477872795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e3cfe606f38e7480014c6a2dd2686193b5eda5b5e5b1efc5f06b5f0ea3b381743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477872795&rft_id=info:pmid/33435201&rfr_iscdi=true |