Loading…

New periodic exact traveling wave solutions of Camassa–Holm equation

In Zhang et al. (2007) and Zhang (2021) we constructed all single-peak traveling wave solutions of the Camassa–Holm equation including some explicit solutions. In general it is a challenge to construct exact multi-peak traveling wave solutions. As an example a periodic traveling wave (or wavetrain),...

Full description

Saved in:
Bibliographic Details
Published in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2022-12, Vol.6, p.100426, Article 100426
Main Author: Zhang, Guoping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613
cites cdi_FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613
container_end_page
container_issue
container_start_page 100426
container_title Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters
container_volume 6
creator Zhang, Guoping
description In Zhang et al. (2007) and Zhang (2021) we constructed all single-peak traveling wave solutions of the Camassa–Holm equation including some explicit solutions. In general it is a challenge to construct exact multi-peak traveling wave solutions. As an example a periodic traveling wave (or wavetrain), a special type of spatiotemporal oscillation that is a periodic function of both space and time, plays a fundamental role in many mathematical equations such as shallow water wave equations. In this paper we will construct some new exact periodic traveling wave solutions of the Camassa–Holm equation.
doi_str_mv 10.1016/j.padiff.2022.100426
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18e8b1cb96b548eb8a12e1eeae01c933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666818122000857</els_id><doaj_id>oai_doaj_org_article_18e8b1cb96b548eb8a12e1eeae01c933</doaj_id><sourcerecordid>S2666818122000857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRSMEElXpDVj4AikeO3GcDRKqKK1UwQbWlmNPKldpXey0hR134IachLRBiBWrGf3RvPnzk-Qa6BgoiJvVeKutq-sxo4x1Es2YOEsGTAiRSpBw_qe_TEYxriilLAcOJR8k00c8kC0G560zBN-0aUkb9B4bt1mSQ9eQ6Jtd6_wmEl-TiV7rGPXXx-fMN2uCrzt9nF0lF7VuIo5-6jB5md4_T2bp4ulhPrlbpIbJok0LKngt8opnxhRZwW1pOELN6s4LmjKvCiEhy3VW2gK45EZYbmVeZXnOpRDAh8m851qvV2ob3FqHd-W1UyfBh6XSoXWmQQUSZQWmKkWVZxIrqYEhIGqkYErOO1bWs0zwMQasf3lA1TFa1V04RauO0ao-2m7ttl_D7s-9w6CicbgxaF1A03ZG3P-Ab3V0g4Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New periodic exact traveling wave solutions of Camassa–Holm equation</title><source>ScienceDirect®</source><creator>Zhang, Guoping</creator><creatorcontrib>Zhang, Guoping</creatorcontrib><description>In Zhang et al. (2007) and Zhang (2021) we constructed all single-peak traveling wave solutions of the Camassa–Holm equation including some explicit solutions. In general it is a challenge to construct exact multi-peak traveling wave solutions. As an example a periodic traveling wave (or wavetrain), a special type of spatiotemporal oscillation that is a periodic function of both space and time, plays a fundamental role in many mathematical equations such as shallow water wave equations. In this paper we will construct some new exact periodic traveling wave solutions of the Camassa–Holm equation.</description><identifier>ISSN: 2666-8181</identifier><identifier>EISSN: 2666-8181</identifier><identifier>DOI: 10.1016/j.padiff.2022.100426</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Camassa–Holm equation ; Cuspon solution ; Explicit solution ; Periodic ; Traveling wave solution</subject><ispartof>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2022-12, Vol.6, p.100426, Article 100426</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613</citedby><cites>FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666818122000857$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45779</link.rule.ids></links><search><creatorcontrib>Zhang, Guoping</creatorcontrib><title>New periodic exact traveling wave solutions of Camassa–Holm equation</title><title>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</title><description>In Zhang et al. (2007) and Zhang (2021) we constructed all single-peak traveling wave solutions of the Camassa–Holm equation including some explicit solutions. In general it is a challenge to construct exact multi-peak traveling wave solutions. As an example a periodic traveling wave (or wavetrain), a special type of spatiotemporal oscillation that is a periodic function of both space and time, plays a fundamental role in many mathematical equations such as shallow water wave equations. In this paper we will construct some new exact periodic traveling wave solutions of the Camassa–Holm equation.</description><subject>Camassa–Holm equation</subject><subject>Cuspon solution</subject><subject>Explicit solution</subject><subject>Periodic</subject><subject>Traveling wave solution</subject><issn>2666-8181</issn><issn>2666-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEFOwzAQRSMEElXpDVj4AikeO3GcDRKqKK1UwQbWlmNPKldpXey0hR134IachLRBiBWrGf3RvPnzk-Qa6BgoiJvVeKutq-sxo4x1Es2YOEsGTAiRSpBw_qe_TEYxriilLAcOJR8k00c8kC0G560zBN-0aUkb9B4bt1mSQ9eQ6Jtd6_wmEl-TiV7rGPXXx-fMN2uCrzt9nF0lF7VuIo5-6jB5md4_T2bp4ulhPrlbpIbJok0LKngt8opnxhRZwW1pOELN6s4LmjKvCiEhy3VW2gK45EZYbmVeZXnOpRDAh8m851qvV2ob3FqHd-W1UyfBh6XSoXWmQQUSZQWmKkWVZxIrqYEhIGqkYErOO1bWs0zwMQasf3lA1TFa1V04RauO0ao-2m7ttl_D7s-9w6CicbgxaF1A03ZG3P-Ab3V0g4Y</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Guoping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202212</creationdate><title>New periodic exact traveling wave solutions of Camassa–Holm equation</title><author>Zhang, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Camassa–Holm equation</topic><topic>Cuspon solution</topic><topic>Explicit solution</topic><topic>Periodic</topic><topic>Traveling wave solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New periodic exact traveling wave solutions of Camassa–Holm equation</atitle><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle><date>2022-12</date><risdate>2022</risdate><volume>6</volume><spage>100426</spage><pages>100426-</pages><artnum>100426</artnum><issn>2666-8181</issn><eissn>2666-8181</eissn><abstract>In Zhang et al. (2007) and Zhang (2021) we constructed all single-peak traveling wave solutions of the Camassa–Holm equation including some explicit solutions. In general it is a challenge to construct exact multi-peak traveling wave solutions. As an example a periodic traveling wave (or wavetrain), a special type of spatiotemporal oscillation that is a periodic function of both space and time, plays a fundamental role in many mathematical equations such as shallow water wave equations. In this paper we will construct some new exact periodic traveling wave solutions of the Camassa–Holm equation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.padiff.2022.100426</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8181
ispartof Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2022-12, Vol.6, p.100426, Article 100426
issn 2666-8181
2666-8181
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_18e8b1cb96b548eb8a12e1eeae01c933
source ScienceDirect®
subjects Camassa–Holm equation
Cuspon solution
Explicit solution
Periodic
Traveling wave solution
title New periodic exact traveling wave solutions of Camassa–Holm equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20periodic%20exact%20traveling%20wave%20solutions%20of%20Camassa%E2%80%93Holm%20equation&rft.jtitle=Partial%20differential%20equations%20in%20applied%20mathematics%20:%20a%20spin-off%20of%20Applied%20Mathematics%20Letters&rft.au=Zhang,%20Guoping&rft.date=2022-12&rft.volume=6&rft.spage=100426&rft.pages=100426-&rft.artnum=100426&rft.issn=2666-8181&rft.eissn=2666-8181&rft_id=info:doi/10.1016/j.padiff.2022.100426&rft_dat=%3Celsevier_doaj_%3ES2666818122000857%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-7063f65b34cc7473d9c3e1f2f193ec95b768145a49d71383c6d3d85b455386613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true