Loading…

Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation

Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to c...

Full description

Saved in:
Bibliographic Details
Published in:JMIR formative research 2023-09, Vol.7, p.e48534
Main Authors: Matsuda, Shinichi, Ohtomo, Takumi, Okuyama, Masaru, Miyake, Hiraku, Aoki, Kotonari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23
cites cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23
container_end_page
container_issue
container_start_page e48534
container_title JMIR formative research
container_volume 7
creator Matsuda, Shinichi
Ohtomo, Takumi
Okuyama, Masaru
Miyake, Hiraku
Aoki, Kotonari
description Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P
doi_str_mv 10.2196/48534
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671</doaj_id><sourcerecordid>2918545807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</originalsourceid><addsrcrecordid>eNpdkl1r2zAYhcXoWEuX_2AYg96k0_dHb0pps62QscI62J14LcmOg2Olkh3Yv5_clLHu6gi9Rw_vEQehBcGXlBj5iWvB-Bt0RoUkS0blr5N_zqdokfMWY0wJkcqwd-iUKYWV4fIMhVUeux2M3dBWD0XCMFY_iuYG3NjFoXrcpDi1mwqqNQztBG2oHlJ0Ief5ybfoQ391lOouHEIf97uZAYOvVgfoJ5gp79HbBvocFi96jn5-Xj3efl2uv3-5v71ZLx1nYlx65QLUxnHDuTS1MZphbBqtDfOm8ZSIhjZaGedl4wEDBc9c7XgQEiQDys7R_ZHrI2ztPpVk6beN0Nnni5haC2nsXB8s0SUh50xKSnnNDGCmdIHhUHsmFSms6yNrP9W74F1JlaB_BX09GbqNbePBEiw4xkQVwsULIcWnKeTR7rrsQt_DEOKULdWSayMFl8X64T_rNk5pKH9lqSFacKHxDPx4dLkUc06h-bsNwXYugn0uAvsDGS6jtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918545807</pqid></control><display><type>article</type><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</creator><creatorcontrib>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</creatorcontrib><description>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P&lt;.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P&lt;.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</description><identifier>ISSN: 2561-326X</identifier><identifier>EISSN: 2561-326X</identifier><identifier>DOI: 10.2196/48534</identifier><identifier>PMID: 37707946</identifier><language>eng</language><publisher>Toronto: JMIR Publications</publisher><subject>Blogs ; Breast cancer ; Classification ; Disease ; Feedback ; Health care ; Machine learning ; Multimedia ; Original Paper ; Patient satisfaction ; Questionnaires ; Sentiment analysis ; Social networks</subject><ispartof>JMIR formative research, 2023-09, Vol.7, p.e48534</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Shinichi Matsuda, Takumi Ohtomo, Masaru Okuyama, Hiraku Miyake, Kotonari Aoki. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.09.2023.</rights><rights>Shinichi Matsuda, Takumi Ohtomo, Masaru Okuyama, Hiraku Miyake, Kotonari Aoki. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.09.2023. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</citedby><cites>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</cites><orcidid>0000-0002-6438-6315 ; 0009-0000-5226-1243 ; 0000-0003-1822-1090 ; 0000-0002-1923-7003 ; 0009-0001-4582-5749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918545807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918545807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Matsuda, Shinichi</creatorcontrib><creatorcontrib>Ohtomo, Takumi</creatorcontrib><creatorcontrib>Okuyama, Masaru</creatorcontrib><creatorcontrib>Miyake, Hiraku</creatorcontrib><creatorcontrib>Aoki, Kotonari</creatorcontrib><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><title>JMIR formative research</title><description>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P&lt;.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P&lt;.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</description><subject>Blogs</subject><subject>Breast cancer</subject><subject>Classification</subject><subject>Disease</subject><subject>Feedback</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Original Paper</subject><subject>Patient satisfaction</subject><subject>Questionnaires</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><issn>2561-326X</issn><issn>2561-326X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1r2zAYhcXoWEuX_2AYg96k0_dHb0pps62QscI62J14LcmOg2Olkh3Yv5_clLHu6gi9Rw_vEQehBcGXlBj5iWvB-Bt0RoUkS0blr5N_zqdokfMWY0wJkcqwd-iUKYWV4fIMhVUeux2M3dBWD0XCMFY_iuYG3NjFoXrcpDi1mwqqNQztBG2oHlJ0Ief5ybfoQ391lOouHEIf97uZAYOvVgfoJ5gp79HbBvocFi96jn5-Xj3efl2uv3-5v71ZLx1nYlx65QLUxnHDuTS1MZphbBqtDfOm8ZSIhjZaGedl4wEDBc9c7XgQEiQDys7R_ZHrI2ztPpVk6beN0Nnni5haC2nsXB8s0SUh50xKSnnNDGCmdIHhUHsmFSms6yNrP9W74F1JlaB_BX09GbqNbePBEiw4xkQVwsULIcWnKeTR7rrsQt_DEOKULdWSayMFl8X64T_rNk5pKH9lqSFacKHxDPx4dLkUc06h-bsNwXYugn0uAvsDGS6jtw</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Matsuda, Shinichi</creator><creator>Ohtomo, Takumi</creator><creator>Okuyama, Masaru</creator><creator>Miyake, Hiraku</creator><creator>Aoki, Kotonari</creator><general>JMIR Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6438-6315</orcidid><orcidid>https://orcid.org/0009-0000-5226-1243</orcidid><orcidid>https://orcid.org/0000-0003-1822-1090</orcidid><orcidid>https://orcid.org/0000-0002-1923-7003</orcidid><orcidid>https://orcid.org/0009-0001-4582-5749</orcidid></search><sort><creationdate>20230914</creationdate><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><author>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blogs</topic><topic>Breast cancer</topic><topic>Classification</topic><topic>Disease</topic><topic>Feedback</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Original Paper</topic><topic>Patient satisfaction</topic><topic>Questionnaires</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuda, Shinichi</creatorcontrib><creatorcontrib>Ohtomo, Takumi</creatorcontrib><creatorcontrib>Okuyama, Masaru</creatorcontrib><creatorcontrib>Miyake, Hiraku</creatorcontrib><creatorcontrib>Aoki, Kotonari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JMIR formative research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuda, Shinichi</au><au>Ohtomo, Takumi</au><au>Okuyama, Masaru</au><au>Miyake, Hiraku</au><au>Aoki, Kotonari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</atitle><jtitle>JMIR formative research</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>7</volume><spage>e48534</spage><pages>e48534-</pages><issn>2561-326X</issn><eissn>2561-326X</eissn><abstract>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P&lt;.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P&lt;.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</abstract><cop>Toronto</cop><pub>JMIR Publications</pub><pmid>37707946</pmid><doi>10.2196/48534</doi><orcidid>https://orcid.org/0000-0002-6438-6315</orcidid><orcidid>https://orcid.org/0009-0000-5226-1243</orcidid><orcidid>https://orcid.org/0000-0003-1822-1090</orcidid><orcidid>https://orcid.org/0000-0002-1923-7003</orcidid><orcidid>https://orcid.org/0009-0001-4582-5749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2561-326X
ispartof JMIR formative research, 2023-09, Vol.7, p.e48534
issn 2561-326X
2561-326X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671
source Publicly Available Content Database; PubMed Central
subjects Blogs
Breast cancer
Classification
Disease
Feedback
Health care
Machine learning
Multimedia
Original Paper
Patient satisfaction
Questionnaires
Sentiment analysis
Social networks
title Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Patient%20Satisfaction%20Through%20a%20Language%20Processing%20Model:%20Model%20Development%20and%20Evaluation&rft.jtitle=JMIR%20formative%20research&rft.au=Matsuda,%20Shinichi&rft.date=2023-09-14&rft.volume=7&rft.spage=e48534&rft.pages=e48534-&rft.issn=2561-326X&rft.eissn=2561-326X&rft_id=info:doi/10.2196/48534&rft_dat=%3Cproquest_doaj_%3E2918545807%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918545807&rft_id=info:pmid/37707946&rfr_iscdi=true