Loading…
Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation
Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to c...
Saved in:
Published in: | JMIR formative research 2023-09, Vol.7, p.e48534 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23 |
container_end_page | |
container_issue | |
container_start_page | e48534 |
container_title | JMIR formative research |
container_volume | 7 |
creator | Matsuda, Shinichi Ohtomo, Takumi Okuyama, Masaru Miyake, Hiraku Aoki, Kotonari |
description | Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P |
doi_str_mv | 10.2196/48534 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671</doaj_id><sourcerecordid>2918545807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</originalsourceid><addsrcrecordid>eNpdkl1r2zAYhcXoWEuX_2AYg96k0_dHb0pps62QscI62J14LcmOg2Olkh3Yv5_clLHu6gi9Rw_vEQehBcGXlBj5iWvB-Bt0RoUkS0blr5N_zqdokfMWY0wJkcqwd-iUKYWV4fIMhVUeux2M3dBWD0XCMFY_iuYG3NjFoXrcpDi1mwqqNQztBG2oHlJ0Ief5ybfoQ391lOouHEIf97uZAYOvVgfoJ5gp79HbBvocFi96jn5-Xj3efl2uv3-5v71ZLx1nYlx65QLUxnHDuTS1MZphbBqtDfOm8ZSIhjZaGedl4wEDBc9c7XgQEiQDys7R_ZHrI2ztPpVk6beN0Nnni5haC2nsXB8s0SUh50xKSnnNDGCmdIHhUHsmFSms6yNrP9W74F1JlaB_BX09GbqNbePBEiw4xkQVwsULIcWnKeTR7rrsQt_DEOKULdWSayMFl8X64T_rNk5pKH9lqSFacKHxDPx4dLkUc06h-bsNwXYugn0uAvsDGS6jtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918545807</pqid></control><display><type>article</type><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</creator><creatorcontrib>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</creatorcontrib><description>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P<.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P<.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</description><identifier>ISSN: 2561-326X</identifier><identifier>EISSN: 2561-326X</identifier><identifier>DOI: 10.2196/48534</identifier><identifier>PMID: 37707946</identifier><language>eng</language><publisher>Toronto: JMIR Publications</publisher><subject>Blogs ; Breast cancer ; Classification ; Disease ; Feedback ; Health care ; Machine learning ; Multimedia ; Original Paper ; Patient satisfaction ; Questionnaires ; Sentiment analysis ; Social networks</subject><ispartof>JMIR formative research, 2023-09, Vol.7, p.e48534</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Shinichi Matsuda, Takumi Ohtomo, Masaru Okuyama, Hiraku Miyake, Kotonari Aoki. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.09.2023.</rights><rights>Shinichi Matsuda, Takumi Ohtomo, Masaru Okuyama, Hiraku Miyake, Kotonari Aoki. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.09.2023. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</citedby><cites>FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</cites><orcidid>0000-0002-6438-6315 ; 0009-0000-5226-1243 ; 0000-0003-1822-1090 ; 0000-0002-1923-7003 ; 0009-0001-4582-5749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918545807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918545807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Matsuda, Shinichi</creatorcontrib><creatorcontrib>Ohtomo, Takumi</creatorcontrib><creatorcontrib>Okuyama, Masaru</creatorcontrib><creatorcontrib>Miyake, Hiraku</creatorcontrib><creatorcontrib>Aoki, Kotonari</creatorcontrib><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><title>JMIR formative research</title><description>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P<.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P<.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</description><subject>Blogs</subject><subject>Breast cancer</subject><subject>Classification</subject><subject>Disease</subject><subject>Feedback</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Original Paper</subject><subject>Patient satisfaction</subject><subject>Questionnaires</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><issn>2561-326X</issn><issn>2561-326X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1r2zAYhcXoWEuX_2AYg96k0_dHb0pps62QscI62J14LcmOg2Olkh3Yv5_clLHu6gi9Rw_vEQehBcGXlBj5iWvB-Bt0RoUkS0blr5N_zqdokfMWY0wJkcqwd-iUKYWV4fIMhVUeux2M3dBWD0XCMFY_iuYG3NjFoXrcpDi1mwqqNQztBG2oHlJ0Ief5ybfoQ391lOouHEIf97uZAYOvVgfoJ5gp79HbBvocFi96jn5-Xj3efl2uv3-5v71ZLx1nYlx65QLUxnHDuTS1MZphbBqtDfOm8ZSIhjZaGedl4wEDBc9c7XgQEiQDys7R_ZHrI2ztPpVk6beN0Nnni5haC2nsXB8s0SUh50xKSnnNDGCmdIHhUHsmFSms6yNrP9W74F1JlaB_BX09GbqNbePBEiw4xkQVwsULIcWnKeTR7rrsQt_DEOKULdWSayMFl8X64T_rNk5pKH9lqSFacKHxDPx4dLkUc06h-bsNwXYugn0uAvsDGS6jtw</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Matsuda, Shinichi</creator><creator>Ohtomo, Takumi</creator><creator>Okuyama, Masaru</creator><creator>Miyake, Hiraku</creator><creator>Aoki, Kotonari</creator><general>JMIR Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6438-6315</orcidid><orcidid>https://orcid.org/0009-0000-5226-1243</orcidid><orcidid>https://orcid.org/0000-0003-1822-1090</orcidid><orcidid>https://orcid.org/0000-0002-1923-7003</orcidid><orcidid>https://orcid.org/0009-0001-4582-5749</orcidid></search><sort><creationdate>20230914</creationdate><title>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</title><author>Matsuda, Shinichi ; Ohtomo, Takumi ; Okuyama, Masaru ; Miyake, Hiraku ; Aoki, Kotonari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blogs</topic><topic>Breast cancer</topic><topic>Classification</topic><topic>Disease</topic><topic>Feedback</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Original Paper</topic><topic>Patient satisfaction</topic><topic>Questionnaires</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuda, Shinichi</creatorcontrib><creatorcontrib>Ohtomo, Takumi</creatorcontrib><creatorcontrib>Okuyama, Masaru</creatorcontrib><creatorcontrib>Miyake, Hiraku</creatorcontrib><creatorcontrib>Aoki, Kotonari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JMIR formative research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuda, Shinichi</au><au>Ohtomo, Takumi</au><au>Okuyama, Masaru</au><au>Miyake, Hiraku</au><au>Aoki, Kotonari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation</atitle><jtitle>JMIR formative research</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>7</volume><spage>e48534</spage><pages>e48534-</pages><issn>2561-326X</issn><eissn>2561-326X</eissn><abstract>Background:Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited.Objective:This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data.Methods:We constructed a neural network–based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model’s effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer.Results:We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P<.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (−0.057 and −0.012, respectively; 2-tailed t47=5.392, P<.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification.Conclusions:Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.</abstract><cop>Toronto</cop><pub>JMIR Publications</pub><pmid>37707946</pmid><doi>10.2196/48534</doi><orcidid>https://orcid.org/0000-0002-6438-6315</orcidid><orcidid>https://orcid.org/0009-0000-5226-1243</orcidid><orcidid>https://orcid.org/0000-0003-1822-1090</orcidid><orcidid>https://orcid.org/0000-0002-1923-7003</orcidid><orcidid>https://orcid.org/0009-0001-4582-5749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2561-326X |
ispartof | JMIR formative research, 2023-09, Vol.7, p.e48534 |
issn | 2561-326X 2561-326X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_18fac44366224b39a0378cbc0ebd3671 |
source | Publicly Available Content Database; PubMed Central |
subjects | Blogs Breast cancer Classification Disease Feedback Health care Machine learning Multimedia Original Paper Patient satisfaction Questionnaires Sentiment analysis Social networks |
title | Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Patient%20Satisfaction%20Through%20a%20Language%20Processing%20Model:%20Model%20Development%20and%20Evaluation&rft.jtitle=JMIR%20formative%20research&rft.au=Matsuda,%20Shinichi&rft.date=2023-09-14&rft.volume=7&rft.spage=e48534&rft.pages=e48534-&rft.issn=2561-326X&rft.eissn=2561-326X&rft_id=info:doi/10.2196/48534&rft_dat=%3Cproquest_doaj_%3E2918545807%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-d7ceab9c494469b9983009f8893d9fd215f2f879cd6fda0a2ad3cbc4e56a63a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918545807&rft_id=info:pmid/37707946&rfr_iscdi=true |