Loading…

Effect of Ceramic Scaffold Architectural Parameters on Biological Response

Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2015-01, Vol.3, p.151-151
Main Authors: Gariboldi, Maria Isabella, Best, Serena M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3
cites cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3
container_end_page 151
container_issue
container_start_page 151
container_title Frontiers in bioengineering and biotechnology
container_volume 3
creator Gariboldi, Maria Isabella
Best, Serena M
description Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.
doi_str_mv 10.3389/fbioe.2015.00151
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1907979a48c9484c803a706926642534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1907979a48c9484c803a706926642534</doaj_id><sourcerecordid>1727991478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</originalsourceid><addsrcrecordid>eNpVkctPGzEQxq2KqiDKvadqj70k2F4_L5UgojyERNXH2fLOjoPRZp3aGyT--zoJILh4LH_f_Majj5AvjM7b1tjT0MWEc06ZnNN6sA_kiHOrZoIZefDmfkhOSnmg1cOlloZ_IodcScqoVEfk5iIEhKlJoVlg9qsIzW_wIaShb84y3Mepqpvsh-anrzJOmEuTxuY8piEtI1ThF5Z1Ggt-Jh-DHwqePNdj8vfHxZ_F1ez27vJ6cXY7A6H4NAuq6xjlBqQEKaTRloPoOyU6KXrUvGc0BI1AuQRDbQ-sN1QyywCo9x7bY3K95_bJP7h1jiufn1zy0e0eUl46n6cIAzpmqbbaemHACiMqr_WaKsuVEly2orK-71nrTbfCHnCc6q7voO-VMd67ZXp0Qlpj6Bbw7RmQ078NlsmtYgEcBj9i2hTHNNfWMqFNtdK9FXIqJWN4HcOo2ybqdom6baJul2ht-fr2e68NL_m1_wER85xF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727991478</pqid></control><display><type>article</type><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><source>PubMed</source><creator>Gariboldi, Maria Isabella ; Best, Serena M</creator><creatorcontrib>Gariboldi, Maria Isabella ; Best, Serena M</creatorcontrib><description>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2015.00151</identifier><identifier>PMID: 26501056</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>3D printing ; Bioengineering and Biotechnology ; bone tissue engineering ; Ceramic scaffolds ; Graded materials ; Scaffold architecture ; Scaffold Design</subject><ispartof>Frontiers in bioengineering and biotechnology, 2015-01, Vol.3, p.151-151</ispartof><rights>Copyright © 2015 Gariboldi and Best. 2015 Gariboldi and Best</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</citedby><cites>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26501056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gariboldi, Maria Isabella</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</description><subject>3D printing</subject><subject>Bioengineering and Biotechnology</subject><subject>bone tissue engineering</subject><subject>Ceramic scaffolds</subject><subject>Graded materials</subject><subject>Scaffold architecture</subject><subject>Scaffold Design</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctPGzEQxq2KqiDKvadqj70k2F4_L5UgojyERNXH2fLOjoPRZp3aGyT--zoJILh4LH_f_Majj5AvjM7b1tjT0MWEc06ZnNN6sA_kiHOrZoIZefDmfkhOSnmg1cOlloZ_IodcScqoVEfk5iIEhKlJoVlg9qsIzW_wIaShb84y3Mepqpvsh-anrzJOmEuTxuY8piEtI1ThF5Z1Ggt-Jh-DHwqePNdj8vfHxZ_F1ez27vJ6cXY7A6H4NAuq6xjlBqQEKaTRloPoOyU6KXrUvGc0BI1AuQRDbQ-sN1QyywCo9x7bY3K95_bJP7h1jiufn1zy0e0eUl46n6cIAzpmqbbaemHACiMqr_WaKsuVEly2orK-71nrTbfCHnCc6q7voO-VMd67ZXp0Qlpj6Bbw7RmQ078NlsmtYgEcBj9i2hTHNNfWMqFNtdK9FXIqJWN4HcOo2ybqdom6baJul2ht-fr2e68NL_m1_wER85xF</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Gariboldi, Maria Isabella</creator><creator>Best, Serena M</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150101</creationdate><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><author>Gariboldi, Maria Isabella ; Best, Serena M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3D printing</topic><topic>Bioengineering and Biotechnology</topic><topic>bone tissue engineering</topic><topic>Ceramic scaffolds</topic><topic>Graded materials</topic><topic>Scaffold architecture</topic><topic>Scaffold Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gariboldi, Maria Isabella</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gariboldi, Maria Isabella</au><au>Best, Serena M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><spage>151</spage><epage>151</epage><pages>151-151</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>26501056</pmid><doi>10.3389/fbioe.2015.00151</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-4185
ispartof Frontiers in bioengineering and biotechnology, 2015-01, Vol.3, p.151-151
issn 2296-4185
2296-4185
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1907979a48c9484c803a706926642534
source PubMed
subjects 3D printing
Bioengineering and Biotechnology
bone tissue engineering
Ceramic scaffolds
Graded materials
Scaffold architecture
Scaffold Design
title Effect of Ceramic Scaffold Architectural Parameters on Biological Response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Ceramic%20Scaffold%20Architectural%20Parameters%20on%20Biological%20Response&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Gariboldi,%20Maria%20Isabella&rft.date=2015-01-01&rft.volume=3&rft.spage=151&rft.epage=151&rft.pages=151-151&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2015.00151&rft_dat=%3Cproquest_doaj_%3E1727991478%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727991478&rft_id=info:pmid/26501056&rfr_iscdi=true