Loading…
Effect of Ceramic Scaffold Architectural Parameters on Biological Response
Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and...
Saved in:
Published in: | Frontiers in bioengineering and biotechnology 2015-01, Vol.3, p.151-151 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3 |
container_end_page | 151 |
container_issue | |
container_start_page | 151 |
container_title | Frontiers in bioengineering and biotechnology |
container_volume | 3 |
creator | Gariboldi, Maria Isabella Best, Serena M |
description | Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications. |
doi_str_mv | 10.3389/fbioe.2015.00151 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1907979a48c9484c803a706926642534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1907979a48c9484c803a706926642534</doaj_id><sourcerecordid>1727991478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</originalsourceid><addsrcrecordid>eNpVkctPGzEQxq2KqiDKvadqj70k2F4_L5UgojyERNXH2fLOjoPRZp3aGyT--zoJILh4LH_f_Majj5AvjM7b1tjT0MWEc06ZnNN6sA_kiHOrZoIZefDmfkhOSnmg1cOlloZ_IodcScqoVEfk5iIEhKlJoVlg9qsIzW_wIaShb84y3Mepqpvsh-anrzJOmEuTxuY8piEtI1ThF5Z1Ggt-Jh-DHwqePNdj8vfHxZ_F1ez27vJ6cXY7A6H4NAuq6xjlBqQEKaTRloPoOyU6KXrUvGc0BI1AuQRDbQ-sN1QyywCo9x7bY3K95_bJP7h1jiufn1zy0e0eUl46n6cIAzpmqbbaemHACiMqr_WaKsuVEly2orK-71nrTbfCHnCc6q7voO-VMd67ZXp0Qlpj6Bbw7RmQ078NlsmtYgEcBj9i2hTHNNfWMqFNtdK9FXIqJWN4HcOo2ybqdom6baJul2ht-fr2e68NL_m1_wER85xF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727991478</pqid></control><display><type>article</type><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><source>PubMed</source><creator>Gariboldi, Maria Isabella ; Best, Serena M</creator><creatorcontrib>Gariboldi, Maria Isabella ; Best, Serena M</creatorcontrib><description>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2015.00151</identifier><identifier>PMID: 26501056</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>3D printing ; Bioengineering and Biotechnology ; bone tissue engineering ; Ceramic scaffolds ; Graded materials ; Scaffold architecture ; Scaffold Design</subject><ispartof>Frontiers in bioengineering and biotechnology, 2015-01, Vol.3, p.151-151</ispartof><rights>Copyright © 2015 Gariboldi and Best. 2015 Gariboldi and Best</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</citedby><cites>FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26501056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gariboldi, Maria Isabella</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</description><subject>3D printing</subject><subject>Bioengineering and Biotechnology</subject><subject>bone tissue engineering</subject><subject>Ceramic scaffolds</subject><subject>Graded materials</subject><subject>Scaffold architecture</subject><subject>Scaffold Design</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctPGzEQxq2KqiDKvadqj70k2F4_L5UgojyERNXH2fLOjoPRZp3aGyT--zoJILh4LH_f_Majj5AvjM7b1tjT0MWEc06ZnNN6sA_kiHOrZoIZefDmfkhOSnmg1cOlloZ_IodcScqoVEfk5iIEhKlJoVlg9qsIzW_wIaShb84y3Mepqpvsh-anrzJOmEuTxuY8piEtI1ThF5Z1Ggt-Jh-DHwqePNdj8vfHxZ_F1ez27vJ6cXY7A6H4NAuq6xjlBqQEKaTRloPoOyU6KXrUvGc0BI1AuQRDbQ-sN1QyywCo9x7bY3K95_bJP7h1jiufn1zy0e0eUl46n6cIAzpmqbbaemHACiMqr_WaKsuVEly2orK-71nrTbfCHnCc6q7voO-VMd67ZXp0Qlpj6Bbw7RmQ078NlsmtYgEcBj9i2hTHNNfWMqFNtdK9FXIqJWN4HcOo2ybqdom6baJul2ht-fr2e68NL_m1_wER85xF</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Gariboldi, Maria Isabella</creator><creator>Best, Serena M</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150101</creationdate><title>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</title><author>Gariboldi, Maria Isabella ; Best, Serena M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3D printing</topic><topic>Bioengineering and Biotechnology</topic><topic>bone tissue engineering</topic><topic>Ceramic scaffolds</topic><topic>Graded materials</topic><topic>Scaffold architecture</topic><topic>Scaffold Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gariboldi, Maria Isabella</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gariboldi, Maria Isabella</au><au>Best, Serena M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Ceramic Scaffold Architectural Parameters on Biological Response</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><spage>151</spage><epage>151</epage><pages>151-151</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>26501056</pmid><doi>10.3389/fbioe.2015.00151</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-4185 |
ispartof | Frontiers in bioengineering and biotechnology, 2015-01, Vol.3, p.151-151 |
issn | 2296-4185 2296-4185 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1907979a48c9484c803a706926642534 |
source | PubMed |
subjects | 3D printing Bioengineering and Biotechnology bone tissue engineering Ceramic scaffolds Graded materials Scaffold architecture Scaffold Design |
title | Effect of Ceramic Scaffold Architectural Parameters on Biological Response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Ceramic%20Scaffold%20Architectural%20Parameters%20on%20Biological%20Response&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Gariboldi,%20Maria%20Isabella&rft.date=2015-01-01&rft.volume=3&rft.spage=151&rft.epage=151&rft.pages=151-151&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2015.00151&rft_dat=%3Cproquest_doaj_%3E1727991478%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f6bb1028c55c5458792c4db64b54de72d10ff7ec025c809dc1d805191cc0aaae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727991478&rft_id=info:pmid/26501056&rfr_iscdi=true |