Loading…

Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography

Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obta...

Full description

Saved in:
Bibliographic Details
Published in:Adsorption science & technology 2015-02, Vol.33 (2), p.139-151
Main Authors: Arcanjo, M.R.A., Fernandes, F.A.N., Silva, I. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3
cites cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3
container_end_page 151
container_issue 2
container_start_page 139
container_title Adsorption science & technology
container_volume 33
creator Arcanjo, M.R.A.
Fernandes, F.A.N.
Silva, I. J.
description Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).
doi_str_mv 10.1260/0263-6174.33.2.139
format article
fullrecord <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_0263-6174.33.2.139</sage_id><doaj_id>oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee</doaj_id><sourcerecordid>1677984457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</originalsourceid><addsrcrecordid>eNqNkU9rGzEQxUVoIW7aL9CTjrmso3-7Wh2DSRODoYU2ZzGWRut11itXWpfut69chxxL5zIw-r3HaB4hnzlbctGwOyYaWTVcq6WUS7Hk0lyRhWCqrRST7TuyeAOuyYec94xxoWu9IC_f8QgJpj6ONAa6ATf1jt673tNvKfqTQ0-3M32afYrTDtMBBrqK4y9M-VXyOMwOUxzoc-7Hjq7jWD38djsYO6SrXYoHmGKX4LibP5L3AYaMn177DXn-8vBj9VRtvj6uV_ebytWMTZX2zoMPQdXAkKF34JzR3vgggoFacQ4oFOgtNKVarJ0pD04HxqTxGOQNWV98fYS9Pab-AGm2EXr7dxBTZyGVbw5ouRFbdN6g440yCgwGhYZzyYQUBrF43V68jin-PGGe7KHPDocBRoynbHmjtWmVqvX_oFKaArcFFRfUpZhzwvC2JWf2HKg952XPeVkprbAl0CK6u4gydGj38ZTGcsV_Kf4AAZ2i8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673399848</pqid></control><display><type>article</type><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><source>Sage Journals GOLD Open Access 2024</source><creator>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</creator><creatorcontrib>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</creatorcontrib><description>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</description><identifier>ISSN: 0263-6174</identifier><identifier>EISSN: 2048-4038</identifier><identifier>DOI: 10.1260/0263-6174.33.2.139</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adsorption ; Amberlite (trademark) ; Chromatography ; Glycerols ; Lactic acid ; Polymers ; Resins ; Separation</subject><ispartof>Adsorption science &amp; technology, 2015-02, Vol.33 (2), p.139-151</ispartof><rights>2015 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</citedby><cites>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1260/0263-6174.33.2.139$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1260/0263-6174.33.2.139$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21966,27853,27924,27925,44945,45333</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1260/0263-6174.33.2.139?utm_source=summon&amp;utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc></links><search><creatorcontrib>Arcanjo, M.R.A.</creatorcontrib><creatorcontrib>Fernandes, F.A.N.</creatorcontrib><creatorcontrib>Silva, I. J.</creatorcontrib><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><title>Adsorption science &amp; technology</title><description>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</description><subject>Adsorption</subject><subject>Amberlite (trademark)</subject><subject>Chromatography</subject><subject>Glycerols</subject><subject>Lactic acid</subject><subject>Polymers</subject><subject>Resins</subject><subject>Separation</subject><issn>0263-6174</issn><issn>2048-4038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkU9rGzEQxUVoIW7aL9CTjrmso3-7Wh2DSRODoYU2ZzGWRut11itXWpfut69chxxL5zIw-r3HaB4hnzlbctGwOyYaWTVcq6WUS7Hk0lyRhWCqrRST7TuyeAOuyYec94xxoWu9IC_f8QgJpj6ONAa6ATf1jt673tNvKfqTQ0-3M32afYrTDtMBBrqK4y9M-VXyOMwOUxzoc-7Hjq7jWD38djsYO6SrXYoHmGKX4LibP5L3AYaMn177DXn-8vBj9VRtvj6uV_ebytWMTZX2zoMPQdXAkKF34JzR3vgggoFacQ4oFOgtNKVarJ0pD04HxqTxGOQNWV98fYS9Pab-AGm2EXr7dxBTZyGVbw5ouRFbdN6g440yCgwGhYZzyYQUBrF43V68jin-PGGe7KHPDocBRoynbHmjtWmVqvX_oFKaArcFFRfUpZhzwvC2JWf2HKg952XPeVkprbAl0CK6u4gydGj38ZTGcsV_Kf4AAZ2i8w</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Arcanjo, M.R.A.</creator><creator>Fernandes, F.A.N.</creator><creator>Silva, I. J.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20150201</creationdate><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><author>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Amberlite (trademark)</topic><topic>Chromatography</topic><topic>Glycerols</topic><topic>Lactic acid</topic><topic>Polymers</topic><topic>Resins</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcanjo, M.R.A.</creatorcontrib><creatorcontrib>Fernandes, F.A.N.</creatorcontrib><creatorcontrib>Silva, I. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Adsorption science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arcanjo, M.R.A.</au><au>Fernandes, F.A.N.</au><au>Silva, I. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</atitle><jtitle>Adsorption science &amp; technology</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>0263-6174</issn><eissn>2048-4038</eissn><abstract>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/0263-6174.33.2.139</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0263-6174
ispartof Adsorption science & technology, 2015-02, Vol.33 (2), p.139-151
issn 0263-6174
2048-4038
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee
source Sage Journals GOLD Open Access 2024
subjects Adsorption
Amberlite (trademark)
Chromatography
Glycerols
Lactic acid
Polymers
Resins
Separation
title Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20Lactic%20Acid%20Produced%20by%20Hydrothermal%20Conversion%20of%20Glycerol%20Using%20Ion-Exchange%20Chromatography&rft.jtitle=Adsorption%20science%20&%20technology&rft.au=Arcanjo,%20M.R.A.&rft.date=2015-02-01&rft.volume=33&rft.issue=2&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=0263-6174&rft.eissn=2048-4038&rft_id=info:doi/10.1260/0263-6174.33.2.139&rft_dat=%3Cproquest_AFRWT%3E1677984457%3C/proquest_AFRWT%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1673399848&rft_id=info:pmid/&rft_sage_id=10.1260_0263-6174.33.2.139&rfr_iscdi=true