Loading…
Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography
Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obta...
Saved in:
Published in: | Adsorption science & technology 2015-02, Vol.33 (2), p.139-151 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3 |
---|---|
cites | cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3 |
container_end_page | 151 |
container_issue | 2 |
container_start_page | 139 |
container_title | Adsorption science & technology |
container_volume | 33 |
creator | Arcanjo, M.R.A. Fernandes, F.A.N. Silva, I. J. |
description | Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day). |
doi_str_mv | 10.1260/0263-6174.33.2.139 |
format | article |
fullrecord | <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_0263-6174.33.2.139</sage_id><doaj_id>oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee</doaj_id><sourcerecordid>1677984457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</originalsourceid><addsrcrecordid>eNqNkU9rGzEQxUVoIW7aL9CTjrmso3-7Wh2DSRODoYU2ZzGWRut11itXWpfut69chxxL5zIw-r3HaB4hnzlbctGwOyYaWTVcq6WUS7Hk0lyRhWCqrRST7TuyeAOuyYec94xxoWu9IC_f8QgJpj6ONAa6ATf1jt673tNvKfqTQ0-3M32afYrTDtMBBrqK4y9M-VXyOMwOUxzoc-7Hjq7jWD38djsYO6SrXYoHmGKX4LibP5L3AYaMn177DXn-8vBj9VRtvj6uV_ebytWMTZX2zoMPQdXAkKF34JzR3vgggoFacQ4oFOgtNKVarJ0pD04HxqTxGOQNWV98fYS9Pab-AGm2EXr7dxBTZyGVbw5ouRFbdN6g440yCgwGhYZzyYQUBrF43V68jin-PGGe7KHPDocBRoynbHmjtWmVqvX_oFKaArcFFRfUpZhzwvC2JWf2HKg952XPeVkprbAl0CK6u4gydGj38ZTGcsV_Kf4AAZ2i8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673399848</pqid></control><display><type>article</type><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><source>Sage Journals GOLD Open Access 2024</source><creator>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</creator><creatorcontrib>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</creatorcontrib><description>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</description><identifier>ISSN: 0263-6174</identifier><identifier>EISSN: 2048-4038</identifier><identifier>DOI: 10.1260/0263-6174.33.2.139</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adsorption ; Amberlite (trademark) ; Chromatography ; Glycerols ; Lactic acid ; Polymers ; Resins ; Separation</subject><ispartof>Adsorption science & technology, 2015-02, Vol.33 (2), p.139-151</ispartof><rights>2015 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</citedby><cites>FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1260/0263-6174.33.2.139$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1260/0263-6174.33.2.139$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21966,27853,27924,27925,44945,45333</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1260/0263-6174.33.2.139?utm_source=summon&utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc></links><search><creatorcontrib>Arcanjo, M.R.A.</creatorcontrib><creatorcontrib>Fernandes, F.A.N.</creatorcontrib><creatorcontrib>Silva, I. J.</creatorcontrib><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><title>Adsorption science & technology</title><description>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</description><subject>Adsorption</subject><subject>Amberlite (trademark)</subject><subject>Chromatography</subject><subject>Glycerols</subject><subject>Lactic acid</subject><subject>Polymers</subject><subject>Resins</subject><subject>Separation</subject><issn>0263-6174</issn><issn>2048-4038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkU9rGzEQxUVoIW7aL9CTjrmso3-7Wh2DSRODoYU2ZzGWRut11itXWpfut69chxxL5zIw-r3HaB4hnzlbctGwOyYaWTVcq6WUS7Hk0lyRhWCqrRST7TuyeAOuyYec94xxoWu9IC_f8QgJpj6ONAa6ATf1jt673tNvKfqTQ0-3M32afYrTDtMBBrqK4y9M-VXyOMwOUxzoc-7Hjq7jWD38djsYO6SrXYoHmGKX4LibP5L3AYaMn177DXn-8vBj9VRtvj6uV_ebytWMTZX2zoMPQdXAkKF34JzR3vgggoFacQ4oFOgtNKVarJ0pD04HxqTxGOQNWV98fYS9Pab-AGm2EXr7dxBTZyGVbw5ouRFbdN6g440yCgwGhYZzyYQUBrF43V68jin-PGGe7KHPDocBRoynbHmjtWmVqvX_oFKaArcFFRfUpZhzwvC2JWf2HKg952XPeVkprbAl0CK6u4gydGj38ZTGcsV_Kf4AAZ2i8w</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Arcanjo, M.R.A.</creator><creator>Fernandes, F.A.N.</creator><creator>Silva, I. J.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20150201</creationdate><title>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</title><author>Arcanjo, M.R.A. ; Fernandes, F.A.N. ; Silva, I. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Amberlite (trademark)</topic><topic>Chromatography</topic><topic>Glycerols</topic><topic>Lactic acid</topic><topic>Polymers</topic><topic>Resins</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcanjo, M.R.A.</creatorcontrib><creatorcontrib>Fernandes, F.A.N.</creatorcontrib><creatorcontrib>Silva, I. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Adsorption science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arcanjo, M.R.A.</au><au>Fernandes, F.A.N.</au><au>Silva, I. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography</atitle><jtitle>Adsorption science & technology</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>0263-6174</issn><eissn>2048-4038</eissn><abstract>Production of lactic acid by hydrothermal conversion of glycerol is an option to add value to the large amounts of glycerol that is being generated during the production of biodiesel. This work aimed to separate lactic acid by ion-exchange resins in a fixed-bed column. Adsorption isotherms were obtained from the breakthrough curves using different initial concentrations of lactic acid (60–302 g/l) and temperatures (30, 40 and 60 °C). Maximum adsorption capacities were estimated by the Langmuir model. Adsorption and desorption cycles for a binary and a real mixture were performed. The methodology proposed for the separation of lactic acid in a fixed-bed column presented high values of adsorptive capacity for both Amberlite IRA-96 and Amberlite IRA-67 resins at 30 °C. Lactic acid was more strongly adsorbed by Amberlite IRA-96 than the IRA-67 resin with maximum adsorption capacity of 544 and 341 g/l, respectively. Chromatographic experiments for the single-component solution (lactic acid), binary mixture (lactic acid and glycerol) and real mixture showed high values of recovery (29.2%, 31.3% and 23.5%, respectively) and productivity (3.14, 7.00 and 2.43 kg of lactic acid/kg resin. day).</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/0263-6174.33.2.139</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0263-6174 |
ispartof | Adsorption science & technology, 2015-02, Vol.33 (2), p.139-151 |
issn | 0263-6174 2048-4038 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_192becd9ec16494a9ef4e911302329ee |
source | Sage Journals GOLD Open Access 2024 |
subjects | Adsorption Amberlite (trademark) Chromatography Glycerols Lactic acid Polymers Resins Separation |
title | Separation of Lactic Acid Produced by Hydrothermal Conversion of Glycerol Using Ion-Exchange Chromatography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20Lactic%20Acid%20Produced%20by%20Hydrothermal%20Conversion%20of%20Glycerol%20Using%20Ion-Exchange%20Chromatography&rft.jtitle=Adsorption%20science%20&%20technology&rft.au=Arcanjo,%20M.R.A.&rft.date=2015-02-01&rft.volume=33&rft.issue=2&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=0263-6174&rft.eissn=2048-4038&rft_id=info:doi/10.1260/0263-6174.33.2.139&rft_dat=%3Cproquest_AFRWT%3E1677984457%3C/proquest_AFRWT%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-7dcdadff45a0e0edcacc97d9df2f9a5411ae24a7ba66668e5c92f9c7f0039def3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1673399848&rft_id=info:pmid/&rft_sage_id=10.1260_0263-6174.33.2.139&rfr_iscdi=true |