Loading…

Revised time estimation of the ancestral human chromosome 2 fusion

Background The reduction of the chromosome number from 48 in the Great Apes to 46 in modern humans is thought to result from the end-to-end fusion of two ancestral non-human primate chromosomes forming the human chromosome 2 (HSA2). Genomic signatures of this event are the presence of inverted telom...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2022-08, Vol.23 (S6), p.1-616, Article 616
Main Authors: Poszewiecka, Barbara, Gogolewski, Krzysztof, Stankiewicz, Paweł, Gambin, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The reduction of the chromosome number from 48 in the Great Apes to 46 in modern humans is thought to result from the end-to-end fusion of two ancestral non-human primate chromosomes forming the human chromosome 2 (HSA2). Genomic signatures of this event are the presence of inverted telomeric repeats at the HSA2 fusion site and a block of degenerate satellite sequences that mark the remnants of the ancestral centromere. It has been estimated that this fusion arose up to 4.5 million years ago (Mya). Results We have developed an enhanced algorithm for the detection and efficient counting of the locally over-represented weak-to-strong (AT to GC) substitutions. By analyzing the enrichment of these substitutions around the fusion site of HSA2 we estimated its formation time at 0.9 Mya with a 95% confidence interval of 0.4-1.5 Mya. Additionally, based on the statistics derived from our algorithm, we have reconstructed the evolutionary distances among the Great Apes (Hominoidea). Conclusions Our results shed light on the HSA2 fusion formation and provide a novel computational alternative for the estimation of the speciation chronology.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-022-08828-7