Loading…
VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data
The vegetation indices (VIs) estimated from remotely sensed data are simple and based on effective algorithms for quantitative and qualitative evaluations of the dynamics of biophysical crop variables such as vegetation cover, leaf area, vigor and development, and many others. Over the last decade,...
Saved in:
Published in: | Agronomy (Basel) 2022-07, Vol.12 (7), p.1518 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vegetation indices (VIs) estimated from remotely sensed data are simple and based on effective algorithms for quantitative and qualitative evaluations of the dynamics of biophysical crop variables such as vegetation cover, leaf area, vigor and development, and many others. Over the last decade, many VIs have been proposed and validated to enhance the vegetation signal by reducing the noise from effects produced either by the soil or by vegetation such as brightness, shadows, color, etc. VIs are commonly calculated from satellite images such as ones from Landsat and Sentinel-2 because of their medium resolution and free availability. However, despite the VIs being fairly simple algorithms, it can take hours to calculate them for an established agricultural area, mainly due to the pre-processing of the images (including atmospheric corrections, the detection of clouds and shadows), size and download time of the images, and the capacity of the computer equipment used. Time increases as the number of images increases. In this sense, the free to use Google Earth Engine (GEE) platform was here used to develop an application called VICAL to calculate 23 VIs map (VIs commonly used in agricultural applications) and time series of any agricultural area in the world with images (cloud-free) from Landsat and Sentinel-2 data. It was found that VICAL can calculate these 23 VIs accurately, and shows the potential of the GEE cloud-based tools using multispectral dataset to assess many spectral VIs. This tool is very beneficial for researchers with poor access to satellite data or in institutions with a lack of computational infrastructure to handle the large volumes of satellite datasets, since it is not necessary for the user writing a single line of code. The VICAL is open-access image analysis platform that can be modified to carry out more complex analysis or adapt it to a specific VI application. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy12071518 |