Loading…
Spontaneous rates exhibit high intra-individual stability across movements involving different biomechanical systems and cognitive demands
Spontaneous rhythmic movements are part of everyday life, e.g., in walking, clapping or music making. Humans perform such spontaneous motor actions at different rates that reflect specific biomechanical constraints of the effector system in use. However, there is some evidence for intra-individual c...
Saved in:
Published in: | Scientific reports 2024-06, Vol.14 (1), p.14876-11, Article 14876 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spontaneous rhythmic movements are part of everyday life, e.g., in walking, clapping or music making. Humans perform such spontaneous motor actions at different rates that reflect specific biomechanical constraints of the effector system in use. However, there is some evidence for intra-individual consistency of specific spontaneous rates arguably resulting from common underlying processes. Additionally, individual and contextual factors such as musicianship and circadian rhythms have been suggested to influence spontaneous rates. This study investigated the relative contributions of these factors and provides a comprehensive picture of rates among different spontaneous motor behaviors, i.e., melody production, walking, clapping, tapping with and without sound production, the latter measured online before and in the lab. Participants (
n
= 60) exhibited high intra-individual stability across tasks. Task-related influences included faster tempi for spontaneous production rates of music and wider ranges of spontaneous motor tempi (SMT) and clapping rates compared to walking and music making rates. Moreover, musicians exhibited slower spontaneous rates across tasks, yet we found no influence of time of day on SMT as measured online in pre-lab sessions. Tapping behavior was similar in pre-lab and in-lab sessions, validating the use of online SMT assessments. Together, the prominent role of individual factors and high stability across domains support the idea that different spontaneous motor behaviors are influenced by common underlying processes. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-65788-6 |