Loading…

New sulfonated covalent organic framework for highly effective As(III) removal from water

The goal of taking out As(III) from water is to reduce the detriment that poisonous metals can do to people and nature. A substance that can absorb As(III), TFPOTDB-SO3H, was made by combining 2,5-diaminobenzenesulfonic acid and 2,4,6-tris-(4-formylphenoxy)-1,3,5-triazine in a reaction that joins mo...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-02, Vol.10 (3), p.e25423-e25423, Article e25423
Main Authors: Khosravani, Mohammad, Dehghani Ghanatghestani, Mohsen, Moeinpour, Farid, Parvaresh, Hossein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of taking out As(III) from water is to reduce the detriment that poisonous metals can do to people and nature. A substance that can absorb As(III), TFPOTDB-SO3H, was made by combining 2,5-diaminobenzenesulfonic acid and 2,4,6-tris-(4-formylphenoxy)-1,3,5-triazine in a reaction that joins molecules together. This substance can adsorb As(III) very well and has excellent qualities like being easy to use again, separate substances, and filter out liquids. At pH = 8 and at room temperature, TFPOTDB-SO3H adsorbed a lot of As(III). It achieved a removal rate of 97.1 % within 10 min and could adsorb up to 344.8 mg/g. A research was conducted to investigate the effect of co-existing anions on the elimination of arsenic. The findings indicated that the presence of anions had a minimal adverse impact, reducing As(III) uptake by approximately 1–7 %. The kinetics of the uptake process were found to be controlled by the quasi-second order kinetic model, while the Langmuir isotherm model validated that the mechanism for As(III) removal was monolayer chemisorption. According to the thermodynamic analysis, the adsorption process was endothermic and occurred spontaneously. Moreover, even after 4 successive adsorption-desorption cycles, the adsorbent preserved a substantial uptake productivity of 88.86 % for As(III). The results collectively indicate that TFPOTDB-SO3H holds considerable promise for the efficient adsorption and elimination of As(III) ions from wastewater.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e25423