Loading…
Optimization of the Cold Water Extraction Method for High-Value Bioactive Compounds from Chamomile ( Matricaria chamomilla L.) Flower Heads Through Chemometrics
This study focused on optimizing a cold water extraction method to obtain bioactive compounds from chamomile ( L.), addressing increasing consumer demand for natural products and nutraceuticals. A full-factorial design was employed to evaluate the effects of temperature, time, and chamomile amount o...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2024-10, Vol.29 (20), p.4925 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focused on optimizing a cold water extraction method to obtain bioactive compounds from chamomile (
L.), addressing increasing consumer demand for natural products and nutraceuticals. A full-factorial design was employed to evaluate the effects of temperature, time, and chamomile amount on the polyphenolic profile of extracts. The samples were characterized by HPLC-DAD and UV-Vis coupled with chemometrics; the analysis showed that extraction time negatively affected extract quality, as did the interaction between time and temperature. In addition, a significant positive quadratic effect for temperature and a positive coefficient for chamomile amount was found. ASCA was used to assess the UV-Vis profile, offering an alternative untargeted method for understanding the variable effects. The optimal extraction conditions (25 °C, 32 min, and 2.5 g of chamomile) produced samples high in hydroxybenzoic and hydroxycinnamic acids and flavanol derivatives. Using A face-centered design, this study also monitored antioxidant activity via a DPPH scavenging assay, confirming that the optimal conditions yielded samples within the range of maximum antioxidant activity in the studied experimental domain. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29204925 |