Loading…
Redundancy Optimization of an Uncertain Parallel-Series System with Warm Standby Elements
The redundancy optimization problem is formulated for an uncertain parallel-series system with warm standby elements. The lifetimes and costs of elements are considered uncertain variables, and the weights and volumes of elements are random variables. The uncertain measure optimization model (UMOM),...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The redundancy optimization problem is formulated for an uncertain parallel-series system with warm standby elements. The lifetimes and costs of elements are considered uncertain variables, and the weights and volumes of elements are random variables. The uncertain measure optimization model (UMOM), the uncertain optimistic value optimization model (UOVOM), and the uncertain cost optimization model (UCOM) are developed through reliability maximization, lifetime maximization, and cost minimization, respectively. An efficient simulation optimization algorithm is provided to calculate the objective values and optimal solutions of the UMOM, UOVOM, and UCOM. A numerical example is presented to illustrate the rationality of the models and the feasibility of the optimization algorithm. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2018/3154360 |