Loading…

Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism

Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is ti...

Full description

Saved in:
Bibliographic Details
Published in:Science and technology of nuclear installations 2013-01, Vol.2013 (2013), p.1-18
Main Authors: Hamada, Michael S., Burr, Tom, Howell, John, Skurikhin, Misha, Ticknor, Larry, Weaver, Brian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593
cites cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593
container_end_page 18
container_issue 2013
container_start_page 1
container_title Science and technology of nuclear installations
container_volume 2013
creator Hamada, Michael S.
Burr, Tom
Howell, John
Skurikhin, Misha
Ticknor, Larry
Weaver, Brian
description Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.
doi_str_mv 10.1155/2013/705878
format article
fullrecord <record><control><sourceid>emarefa_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633</doaj_id><sourcerecordid>492045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhpfSQkPiU88FnVvcSKvvo8lXAzHJIT0vI2mUVbFXQZIJ_fdZd4uvPb3D8PAMw9t1Xxj9wZiUlz1l_FJTabT50J0xZfRaUcM_nmYtP3erWpOjQmhFBbNn3dtNbWkPLU0vZLODsifPY8E65l2oJOZCnkr2WCvZ5im1XI7cNTQghylgIdcpRiw4NbKp9bB_bSlPlYDLh0baiAt6hxOW5cQW_QhTqvuL7lOEXcXVvzzvft3ePF_9XD883t1fbR7WXlje1iC00c5o31vDtIE5-6BYiKhs8BG0dlYqK6MBh4BOc-gVdd6BMVxJy8-7-8UbMvweXsv8a_kzZEjD30UuLwOUlvwOB2YRlEBJUQoBwTsfmO1dHx1lQnE-u74vLl9yrQXjycfocKxgOFYwLBXM9LeFHtMU4C39B_66wDgjGOEEC9tTIfk76N-Raw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian</creator><contributor>Simpson, Michael F.</contributor><creatorcontrib>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian ; Simpson, Michael F.</creatorcontrib><description>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</description><identifier>ISSN: 1687-6075</identifier><identifier>EISSN: 1687-6083</identifier><identifier>DOI: 10.1155/2013/705878</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Science and technology of nuclear installations, 2013-01, Vol.2013 (2013), p.1-18</ispartof><rights>Copyright © 2013 Tom Burr et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</citedby><cites>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Simpson, Michael F.</contributor><creatorcontrib>Hamada, Michael S.</creatorcontrib><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Howell, John</creatorcontrib><creatorcontrib>Skurikhin, Misha</creatorcontrib><creatorcontrib>Ticknor, Larry</creatorcontrib><creatorcontrib>Weaver, Brian</creatorcontrib><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><title>Science and technology of nuclear installations</title><description>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</description><issn>1687-6075</issn><issn>1687-6083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1rGzEQhpfSQkPiU88FnVvcSKvvo8lXAzHJIT0vI2mUVbFXQZIJ_fdZd4uvPb3D8PAMw9t1Xxj9wZiUlz1l_FJTabT50J0xZfRaUcM_nmYtP3erWpOjQmhFBbNn3dtNbWkPLU0vZLODsifPY8E65l2oJOZCnkr2WCvZ5im1XI7cNTQghylgIdcpRiw4NbKp9bB_bSlPlYDLh0baiAt6hxOW5cQW_QhTqvuL7lOEXcXVvzzvft3ePF_9XD883t1fbR7WXlje1iC00c5o31vDtIE5-6BYiKhs8BG0dlYqK6MBh4BOc-gVdd6BMVxJy8-7-8UbMvweXsv8a_kzZEjD30UuLwOUlvwOB2YRlEBJUQoBwTsfmO1dHx1lQnE-u74vLl9yrQXjycfocKxgOFYwLBXM9LeFHtMU4C39B_66wDgjGOEEC9tTIfk76N-Raw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hamada, Michael S.</creator><creator>Burr, Tom</creator><creator>Howell, John</creator><creator>Skurikhin, Misha</creator><creator>Ticknor, Larry</creator><creator>Weaver, Brian</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><author>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamada, Michael S.</creatorcontrib><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Howell, John</creatorcontrib><creatorcontrib>Skurikhin, Misha</creatorcontrib><creatorcontrib>Ticknor, Larry</creatorcontrib><creatorcontrib>Weaver, Brian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of nuclear installations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamada, Michael S.</au><au>Burr, Tom</au><au>Howell, John</au><au>Skurikhin, Misha</au><au>Ticknor, Larry</au><au>Weaver, Brian</au><au>Simpson, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</atitle><jtitle>Science and technology of nuclear installations</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-6075</issn><eissn>1687-6083</eissn><abstract>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/705878</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6075
ispartof Science and technology of nuclear installations, 2013-01, Vol.2013 (2013), p.1-18
issn 1687-6075
1687-6083
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633
source Wiley Online Library Open Access; Publicly Available Content Database
title Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Alarm%20Thresholds%20for%20Process%20Monitoring%20Data%20under%20Different%20Assumptions%20about%20the%20Data%20Generating%20Mechanism&rft.jtitle=Science%20and%20technology%20of%20nuclear%20installations&rft.au=Hamada,%20Michael%20S.&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-6075&rft.eissn=1687-6083&rft_id=info:doi/10.1155/2013/705878&rft_dat=%3Cemarefa_doaj_%3E492045%3C/emarefa_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true