Loading…
Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism
Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is ti...
Saved in:
Published in: | Science and technology of nuclear installations 2013-01, Vol.2013 (2013), p.1-18 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593 |
container_end_page | 18 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Science and technology of nuclear installations |
container_volume | 2013 |
creator | Hamada, Michael S. Burr, Tom Howell, John Skurikhin, Misha Ticknor, Larry Weaver, Brian |
description | Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals. |
doi_str_mv | 10.1155/2013/705878 |
format | article |
fullrecord | <record><control><sourceid>emarefa_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633</doaj_id><sourcerecordid>492045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhpfSQkPiU88FnVvcSKvvo8lXAzHJIT0vI2mUVbFXQZIJ_fdZd4uvPb3D8PAMw9t1Xxj9wZiUlz1l_FJTabT50J0xZfRaUcM_nmYtP3erWpOjQmhFBbNn3dtNbWkPLU0vZLODsifPY8E65l2oJOZCnkr2WCvZ5im1XI7cNTQghylgIdcpRiw4NbKp9bB_bSlPlYDLh0baiAt6hxOW5cQW_QhTqvuL7lOEXcXVvzzvft3ePF_9XD883t1fbR7WXlje1iC00c5o31vDtIE5-6BYiKhs8BG0dlYqK6MBh4BOc-gVdd6BMVxJy8-7-8UbMvweXsv8a_kzZEjD30UuLwOUlvwOB2YRlEBJUQoBwTsfmO1dHx1lQnE-u74vLl9yrQXjycfocKxgOFYwLBXM9LeFHtMU4C39B_66wDgjGOEEC9tTIfk76N-Raw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian</creator><contributor>Simpson, Michael F.</contributor><creatorcontrib>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian ; Simpson, Michael F.</creatorcontrib><description>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</description><identifier>ISSN: 1687-6075</identifier><identifier>EISSN: 1687-6083</identifier><identifier>DOI: 10.1155/2013/705878</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Science and technology of nuclear installations, 2013-01, Vol.2013 (2013), p.1-18</ispartof><rights>Copyright © 2013 Tom Burr et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</citedby><cites>FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Simpson, Michael F.</contributor><creatorcontrib>Hamada, Michael S.</creatorcontrib><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Howell, John</creatorcontrib><creatorcontrib>Skurikhin, Misha</creatorcontrib><creatorcontrib>Ticknor, Larry</creatorcontrib><creatorcontrib>Weaver, Brian</creatorcontrib><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><title>Science and technology of nuclear installations</title><description>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</description><issn>1687-6075</issn><issn>1687-6083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1rGzEQhpfSQkPiU88FnVvcSKvvo8lXAzHJIT0vI2mUVbFXQZIJ_fdZd4uvPb3D8PAMw9t1Xxj9wZiUlz1l_FJTabT50J0xZfRaUcM_nmYtP3erWpOjQmhFBbNn3dtNbWkPLU0vZLODsifPY8E65l2oJOZCnkr2WCvZ5im1XI7cNTQghylgIdcpRiw4NbKp9bB_bSlPlYDLh0baiAt6hxOW5cQW_QhTqvuL7lOEXcXVvzzvft3ePF_9XD883t1fbR7WXlje1iC00c5o31vDtIE5-6BYiKhs8BG0dlYqK6MBh4BOc-gVdd6BMVxJy8-7-8UbMvweXsv8a_kzZEjD30UuLwOUlvwOB2YRlEBJUQoBwTsfmO1dHx1lQnE-u74vLl9yrQXjycfocKxgOFYwLBXM9LeFHtMU4C39B_66wDgjGOEEC9tTIfk76N-Raw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hamada, Michael S.</creator><creator>Burr, Tom</creator><creator>Howell, John</creator><creator>Skurikhin, Misha</creator><creator>Ticknor, Larry</creator><creator>Weaver, Brian</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</title><author>Hamada, Michael S. ; Burr, Tom ; Howell, John ; Skurikhin, Misha ; Ticknor, Larry ; Weaver, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamada, Michael S.</creatorcontrib><creatorcontrib>Burr, Tom</creatorcontrib><creatorcontrib>Howell, John</creatorcontrib><creatorcontrib>Skurikhin, Misha</creatorcontrib><creatorcontrib>Ticknor, Larry</creatorcontrib><creatorcontrib>Weaver, Brian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of nuclear installations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamada, Michael S.</au><au>Burr, Tom</au><au>Howell, John</au><au>Skurikhin, Misha</au><au>Ticknor, Larry</au><au>Weaver, Brian</au><au>Simpson, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism</atitle><jtitle>Science and technology of nuclear installations</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-6075</issn><eissn>1687-6083</eissn><abstract>Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/705878</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6075 |
ispartof | Science and technology of nuclear installations, 2013-01, Vol.2013 (2013), p.1-18 |
issn | 1687-6075 1687-6083 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_19ea64e50e544adcbcd192b2fb014633 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
title | Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Alarm%20Thresholds%20for%20Process%20Monitoring%20Data%20under%20Different%20Assumptions%20about%20the%20Data%20Generating%20Mechanism&rft.jtitle=Science%20and%20technology%20of%20nuclear%20installations&rft.au=Hamada,%20Michael%20S.&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-6075&rft.eissn=1687-6083&rft_id=info:doi/10.1155/2013/705878&rft_dat=%3Cemarefa_doaj_%3E492045%3C/emarefa_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-a4787b87c298178ac292d61dfe69dcfa77b95695f8abeaeb73a260bcba8836593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |