Loading…
Analysis of the Vibration Characteristics and Vibration Reduction Methods of Iron Core Reactor
Series iron core reactors are one of the most commonly used electrical equipments in power systems, which can limit short-circuit currents and suppress harmonic waves from capacitor banks. However, the vibration of the reactor will not only generate noise pollution but also diminish the service life...
Saved in:
Published in: | Actuators 2023-09, Vol.12 (9), p.365 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Series iron core reactors are one of the most commonly used electrical equipments in power systems, which can limit short-circuit currents and suppress harmonic waves from capacitor banks. However, the vibration of the reactor will not only generate noise pollution but also diminish the service life of the reactor and jeopardize power system safety. In order to reduce the vibration noise in the core disc region of the reactor, the vibration characteristics of a core reactor are calculated by modifying the anisotropy parameters of the Young’s modulus of the core disc lamellar structure and introducing the core magnetostriction effect based on the simulation analysis method of electromagnetic and mechanical coupling. A detachable single-phase series core reactor model is established, and the validity of the simulation calculation is measured and verified. At the same time, from the perspective of improving the air gap size of the series core reactor and the arrangement of electrical steel sheets, the corresponding iron core vibration reduction scheme is given. The average vibration reduction in the reactor is about 11.6% after comprehensive improvement according to the vibration reduction scheme, which provides an effective method for realizing the vibration and noise reduction in the reactor. |
---|---|
ISSN: | 2076-0825 2076-0825 |
DOI: | 10.3390/act12090365 |