Loading…

Research Progress on Fungal Sesterterpenoids Biosynthesis

Sesterterpenes are 25-carbon terpenoids formed by the cyclization of dimethyl allyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) as structural units by sesterterpenes synthases. Some (not all) sesterterpenoids are modified by cytochrome P450s (CYP450s), resulting in more intricate structure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fungi (Basel) 2022-10, Vol.8 (10), p.1080
Main Authors: Zhang, Ping, Qi, Jianzhao, Duan, Yingce, Gao, Jin-ming, Liu, Chengwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sesterterpenes are 25-carbon terpenoids formed by the cyclization of dimethyl allyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) as structural units by sesterterpenes synthases. Some (not all) sesterterpenoids are modified by cytochrome P450s (CYP450s), resulting in more intricate structures. These compounds have significant physiological activities and pharmacological effects in anti-inflammatory, antibacterial, antitumour, and hypolipidemic communities. Despite being a rare class of terpenoids, sesterterpenoids derived from fungi show a wide range of structural variations. The discovered fungal sesterterpenoid synthases are composed of C-terminal prenyltransferase (PT) and N-terminal terpene synthase (TS) domains, which were given the name PTTSs. PTTSs have the capacities to catalyze chain lengthening and cyclization concurrently. This review summarizes all 52 fungal PTTSs synthases and their biosynthetic pathways involving 100 sesterterpenoids since the discovery of the first PTTSs synthase from fungi in 2013.
ISSN:2309-608X
2309-608X
DOI:10.3390/jof8101080