Loading…
High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techn...
Saved in:
Published in: | Bioengineering (Basel) 2021-11, Vol.8 (11), p.182 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103 |
container_end_page | |
container_issue | 11 |
container_start_page | 182 |
container_title | Bioengineering (Basel) |
container_volume | 8 |
creator | Klontzas, Michail E. Protonotarios, Alexandros |
description | The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering. |
doi_str_mv | 10.3390/bioengineering8110182 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052</doaj_id><sourcerecordid>2601998724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKn9CcKAN96M5mtmMl4IS7V2oUVY9DqcJGdms8wmazKz0v_QH93sbhErXiUkTx5e8p6ieEvJB8478lG7gH5wHjE6P0hKCZXsRXHOOGmqmtfi5V_7s-IypQ0hhHJWs0a8Ls64kIy2Qp4XDzduWFcrTGGcJxd8udxCFg9lH2I5rbFceBjvk0sleFuu0ASfpjibIxv6kn8p75yJOc7exeC36Kd0fLvCAT1GmNweyzu0zuS4n7KuXOx2ozNwMFTXwcwJD-K9w99vilc9jAkvn9aL4uf11x9XN9Xt92_Lq8VtZXLuqZJMMyDAjEDNsBdIe9L0rWh433YMJOq27RCAgyFIUFurrUDR0lpDoynhF8Xy5LUBNmoX3RbivQrg1PEgxEFBnJwZUVGgAqywKEUjNEdJ6t7aXkiqNSM1y67PJ9du1lu0Jn9AhPGZ9PmNd2s1hL2SDRVtewjz_kkQw68Z06S2LhkcR_AY5qRYQ3JpjMkmo-_-QTdhjrmgI0W7TrZMZKo-UbmWlCL2f8JQog7jo_47PvwRycO-zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601998724</pqid></control><display><type>article</type><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Klontzas, Michail E. ; Protonotarios, Alexandros</creator><creatorcontrib>Klontzas, Michail E. ; Protonotarios, Alexandros</creatorcontrib><description>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8110182</identifier><identifier>PMID: 34821748</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial tissues ; Bioengineering ; Biomaterials ; Biomedical materials ; cardiovascular ; Cell cycle ; Cellular structure ; Collagen ; Composition ; Computed tomography ; Evaluation ; Extracellular matrix ; FDA approval ; Human tissues ; Image reconstruction ; Image resolution ; Interferometry ; Labeling ; Laboratories ; Light ; Magnetic resonance imaging ; Medical imaging ; Medicine ; Microelectromechanical systems ; Microenvironments ; Microscopy ; MRI ; musculoskeletal ; neural ; Optical Coherence Tomography ; Quality assessment ; Regeneration (physiology) ; Regenerative medicine ; Review ; Reviews ; Skin ; Spectrum analysis ; Surgical implants ; Tissue engineering ; Transplants & implants ; Visualization</subject><ispartof>Bioengineering (Basel), 2021-11, Vol.8 (11), p.182</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</citedby><cites>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</cites><orcidid>0000-0003-2731-933X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601998724/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601998724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Klontzas, Michail E.</creatorcontrib><creatorcontrib>Protonotarios, Alexandros</creatorcontrib><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><title>Bioengineering (Basel)</title><description>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</description><subject>Artificial tissues</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>cardiovascular</subject><subject>Cell cycle</subject><subject>Cellular structure</subject><subject>Collagen</subject><subject>Composition</subject><subject>Computed tomography</subject><subject>Evaluation</subject><subject>Extracellular matrix</subject><subject>FDA approval</subject><subject>Human tissues</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Interferometry</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Light</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Microelectromechanical systems</subject><subject>Microenvironments</subject><subject>Microscopy</subject><subject>MRI</subject><subject>musculoskeletal</subject><subject>neural</subject><subject>Optical Coherence Tomography</subject><subject>Quality assessment</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Review</subject><subject>Reviews</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Transplants & implants</subject><subject>Visualization</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKn9CcKAN96M5mtmMl4IS7V2oUVY9DqcJGdms8wmazKz0v_QH93sbhErXiUkTx5e8p6ieEvJB8478lG7gH5wHjE6P0hKCZXsRXHOOGmqmtfi5V_7s-IypQ0hhHJWs0a8Ls64kIy2Qp4XDzduWFcrTGGcJxd8udxCFg9lH2I5rbFceBjvk0sleFuu0ASfpjibIxv6kn8p75yJOc7exeC36Kd0fLvCAT1GmNweyzu0zuS4n7KuXOx2ozNwMFTXwcwJD-K9w99vilc9jAkvn9aL4uf11x9XN9Xt92_Lq8VtZXLuqZJMMyDAjEDNsBdIe9L0rWh433YMJOq27RCAgyFIUFurrUDR0lpDoynhF8Xy5LUBNmoX3RbivQrg1PEgxEFBnJwZUVGgAqywKEUjNEdJ6t7aXkiqNSM1y67PJ9du1lu0Jn9AhPGZ9PmNd2s1hL2SDRVtewjz_kkQw68Z06S2LhkcR_AY5qRYQ3JpjMkmo-_-QTdhjrmgI0W7TrZMZKo-UbmWlCL2f8JQog7jo_47PvwRycO-zw</recordid><startdate>20211110</startdate><enddate>20211110</enddate><creator>Klontzas, Michail E.</creator><creator>Protonotarios, Alexandros</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2731-933X</orcidid></search><sort><creationdate>20211110</creationdate><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><author>Klontzas, Michail E. ; Protonotarios, Alexandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial tissues</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>cardiovascular</topic><topic>Cell cycle</topic><topic>Cellular structure</topic><topic>Collagen</topic><topic>Composition</topic><topic>Computed tomography</topic><topic>Evaluation</topic><topic>Extracellular matrix</topic><topic>FDA approval</topic><topic>Human tissues</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Interferometry</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Light</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Microelectromechanical systems</topic><topic>Microenvironments</topic><topic>Microscopy</topic><topic>MRI</topic><topic>musculoskeletal</topic><topic>neural</topic><topic>Optical Coherence Tomography</topic><topic>Quality assessment</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Review</topic><topic>Reviews</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Transplants & implants</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontzas, Michail E.</creatorcontrib><creatorcontrib>Protonotarios, Alexandros</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klontzas, Michail E.</au><au>Protonotarios, Alexandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</atitle><jtitle>Bioengineering (Basel)</jtitle><date>2021-11-10</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>182</spage><pages>182-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34821748</pmid><doi>10.3390/bioengineering8110182</doi><orcidid>https://orcid.org/0000-0003-2731-933X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2021-11, Vol.8 (11), p.182 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052 |
source | Publicly Available Content Database; PubMed Central |
subjects | Artificial tissues Bioengineering Biomaterials Biomedical materials cardiovascular Cell cycle Cellular structure Collagen Composition Computed tomography Evaluation Extracellular matrix FDA approval Human tissues Image reconstruction Image resolution Interferometry Labeling Laboratories Light Magnetic resonance imaging Medical imaging Medicine Microelectromechanical systems Microenvironments Microscopy MRI musculoskeletal neural Optical Coherence Tomography Quality assessment Regeneration (physiology) Regenerative medicine Review Reviews Skin Spectrum analysis Surgical implants Tissue engineering Transplants & implants Visualization |
title | High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Imaging%20for%20the%20Analysis%20and%20Reconstruction%20of%203D%20Microenvironments%20for%20Regenerative%20Medicine:%20An%20Application-Focused%20Review&rft.jtitle=Bioengineering%20(Basel)&rft.au=Klontzas,%20Michail%20E.&rft.date=2021-11-10&rft.volume=8&rft.issue=11&rft.spage=182&rft.pages=182-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8110182&rft_dat=%3Cproquest_doaj_%3E2601998724%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601998724&rft_id=info:pmid/34821748&rfr_iscdi=true |