Loading…

High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review

The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techn...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2021-11, Vol.8 (11), p.182
Main Authors: Klontzas, Michail E., Protonotarios, Alexandros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103
cites cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103
container_end_page
container_issue 11
container_start_page 182
container_title Bioengineering (Basel)
container_volume 8
creator Klontzas, Michail E.
Protonotarios, Alexandros
description The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
doi_str_mv 10.3390/bioengineering8110182
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052</doaj_id><sourcerecordid>2601998724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKn9CcKAN96M5mtmMl4IS7V2oUVY9DqcJGdms8wmazKz0v_QH93sbhErXiUkTx5e8p6ieEvJB8478lG7gH5wHjE6P0hKCZXsRXHOOGmqmtfi5V_7s-IypQ0hhHJWs0a8Ls64kIy2Qp4XDzduWFcrTGGcJxd8udxCFg9lH2I5rbFceBjvk0sleFuu0ASfpjibIxv6kn8p75yJOc7exeC36Kd0fLvCAT1GmNweyzu0zuS4n7KuXOx2ozNwMFTXwcwJD-K9w99vilc9jAkvn9aL4uf11x9XN9Xt92_Lq8VtZXLuqZJMMyDAjEDNsBdIe9L0rWh433YMJOq27RCAgyFIUFurrUDR0lpDoynhF8Xy5LUBNmoX3RbivQrg1PEgxEFBnJwZUVGgAqywKEUjNEdJ6t7aXkiqNSM1y67PJ9du1lu0Jn9AhPGZ9PmNd2s1hL2SDRVtewjz_kkQw68Z06S2LhkcR_AY5qRYQ3JpjMkmo-_-QTdhjrmgI0W7TrZMZKo-UbmWlCL2f8JQog7jo_47PvwRycO-zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601998724</pqid></control><display><type>article</type><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Klontzas, Michail E. ; Protonotarios, Alexandros</creator><creatorcontrib>Klontzas, Michail E. ; Protonotarios, Alexandros</creatorcontrib><description>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8110182</identifier><identifier>PMID: 34821748</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial tissues ; Bioengineering ; Biomaterials ; Biomedical materials ; cardiovascular ; Cell cycle ; Cellular structure ; Collagen ; Composition ; Computed tomography ; Evaluation ; Extracellular matrix ; FDA approval ; Human tissues ; Image reconstruction ; Image resolution ; Interferometry ; Labeling ; Laboratories ; Light ; Magnetic resonance imaging ; Medical imaging ; Medicine ; Microelectromechanical systems ; Microenvironments ; Microscopy ; MRI ; musculoskeletal ; neural ; Optical Coherence Tomography ; Quality assessment ; Regeneration (physiology) ; Regenerative medicine ; Review ; Reviews ; Skin ; Spectrum analysis ; Surgical implants ; Tissue engineering ; Transplants &amp; implants ; Visualization</subject><ispartof>Bioengineering (Basel), 2021-11, Vol.8 (11), p.182</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</citedby><cites>FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</cites><orcidid>0000-0003-2731-933X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601998724/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601998724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Klontzas, Michail E.</creatorcontrib><creatorcontrib>Protonotarios, Alexandros</creatorcontrib><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><title>Bioengineering (Basel)</title><description>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</description><subject>Artificial tissues</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>cardiovascular</subject><subject>Cell cycle</subject><subject>Cellular structure</subject><subject>Collagen</subject><subject>Composition</subject><subject>Computed tomography</subject><subject>Evaluation</subject><subject>Extracellular matrix</subject><subject>FDA approval</subject><subject>Human tissues</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Interferometry</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Light</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Microelectromechanical systems</subject><subject>Microenvironments</subject><subject>Microscopy</subject><subject>MRI</subject><subject>musculoskeletal</subject><subject>neural</subject><subject>Optical Coherence Tomography</subject><subject>Quality assessment</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Review</subject><subject>Reviews</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Transplants &amp; implants</subject><subject>Visualization</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKn9CcKAN96M5mtmMl4IS7V2oUVY9DqcJGdms8wmazKz0v_QH93sbhErXiUkTx5e8p6ieEvJB8478lG7gH5wHjE6P0hKCZXsRXHOOGmqmtfi5V_7s-IypQ0hhHJWs0a8Ls64kIy2Qp4XDzduWFcrTGGcJxd8udxCFg9lH2I5rbFceBjvk0sleFuu0ASfpjibIxv6kn8p75yJOc7exeC36Kd0fLvCAT1GmNweyzu0zuS4n7KuXOx2ozNwMFTXwcwJD-K9w99vilc9jAkvn9aL4uf11x9XN9Xt92_Lq8VtZXLuqZJMMyDAjEDNsBdIe9L0rWh433YMJOq27RCAgyFIUFurrUDR0lpDoynhF8Xy5LUBNmoX3RbivQrg1PEgxEFBnJwZUVGgAqywKEUjNEdJ6t7aXkiqNSM1y67PJ9du1lu0Jn9AhPGZ9PmNd2s1hL2SDRVtewjz_kkQw68Z06S2LhkcR_AY5qRYQ3JpjMkmo-_-QTdhjrmgI0W7TrZMZKo-UbmWlCL2f8JQog7jo_47PvwRycO-zw</recordid><startdate>20211110</startdate><enddate>20211110</enddate><creator>Klontzas, Michail E.</creator><creator>Protonotarios, Alexandros</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2731-933X</orcidid></search><sort><creationdate>20211110</creationdate><title>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</title><author>Klontzas, Michail E. ; Protonotarios, Alexandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial tissues</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>cardiovascular</topic><topic>Cell cycle</topic><topic>Cellular structure</topic><topic>Collagen</topic><topic>Composition</topic><topic>Computed tomography</topic><topic>Evaluation</topic><topic>Extracellular matrix</topic><topic>FDA approval</topic><topic>Human tissues</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Interferometry</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Light</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Microelectromechanical systems</topic><topic>Microenvironments</topic><topic>Microscopy</topic><topic>MRI</topic><topic>musculoskeletal</topic><topic>neural</topic><topic>Optical Coherence Tomography</topic><topic>Quality assessment</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Review</topic><topic>Reviews</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Transplants &amp; implants</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontzas, Michail E.</creatorcontrib><creatorcontrib>Protonotarios, Alexandros</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klontzas, Michail E.</au><au>Protonotarios, Alexandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review</atitle><jtitle>Bioengineering (Basel)</jtitle><date>2021-11-10</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>182</spage><pages>182-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods—including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)—have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34821748</pmid><doi>10.3390/bioengineering8110182</doi><orcidid>https://orcid.org/0000-0003-2731-933X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2021-11, Vol.8 (11), p.182
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a14ad4de8464b3e805fddf481bb2052
source Publicly Available Content Database; PubMed Central
subjects Artificial tissues
Bioengineering
Biomaterials
Biomedical materials
cardiovascular
Cell cycle
Cellular structure
Collagen
Composition
Computed tomography
Evaluation
Extracellular matrix
FDA approval
Human tissues
Image reconstruction
Image resolution
Interferometry
Labeling
Laboratories
Light
Magnetic resonance imaging
Medical imaging
Medicine
Microelectromechanical systems
Microenvironments
Microscopy
MRI
musculoskeletal
neural
Optical Coherence Tomography
Quality assessment
Regeneration (physiology)
Regenerative medicine
Review
Reviews
Skin
Spectrum analysis
Surgical implants
Tissue engineering
Transplants & implants
Visualization
title High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Imaging%20for%20the%20Analysis%20and%20Reconstruction%20of%203D%20Microenvironments%20for%20Regenerative%20Medicine:%20An%20Application-Focused%20Review&rft.jtitle=Bioengineering%20(Basel)&rft.au=Klontzas,%20Michail%20E.&rft.date=2021-11-10&rft.volume=8&rft.issue=11&rft.spage=182&rft.pages=182-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8110182&rft_dat=%3Cproquest_doaj_%3E2601998724%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-82b2a0a2c4eb2ef4e1f06f7463f792a8eb779eaa3ac0e0ebddbd4e4715ba6b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601998724&rft_id=info:pmid/34821748&rfr_iscdi=true