Loading…

Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises

We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.7206-7217
Main Authors: Butkeviciute, Egle, Bikulciene, Liepa, Sidekerskiene, Tatjana, Blazauskas, Tomas, Maskeliunas, Rytis, Damasevicius, Robertas, Wei, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333
cites cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333
container_end_page 7217
container_issue
container_start_page 7206
container_title IEEE access
container_volume 7
creator Butkeviciute, Egle
Bikulciene, Liepa
Sidekerskiene, Tatjana
Blazauskas, Tomas
Maskeliunas, Rytis
Damasevicius, Robertas
Wei, Wei
description We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.
doi_str_mv 10.1109/ACCESS.2018.2890335
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598718</ieee_id><doaj_id>oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c</doaj_id><sourcerecordid>2455606254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsNT-gr4EfN6a--WxlLUtVASrzyEms7Jl29RkFfvv3boizssMhzlnGL6imBI8IwSbu_liUW23M4qJnlFtMGPiohhRIk3JBJOX_-brYpLzDvele0moUbF6gn38dC2KNXqIn7CHQ4fmqYPa-Q7VMfXqa9MCqqolmh9ce8pNRs0BbY8xdRlVX5B8kyHfFFe1azNMfvu4eLmvnhercvO4XC_mm9JzrLtSS8NYDSFQr6VSEBQJQWOBVU0BOOdgHCE04EC5l1Ri7CQIkJQHqgJjbFysh9wQ3c4eU7N36WSja-yPENObdalrfAuWOKINYURJDhxobYzh2OMQlGfGC99n3Q5ZxxTfPyB3dhc_Uv9ktpQLIbGkgvdbbNjyKeacoP67SrA9E7ADAXsmYH8J9K7p4GoA4M-hhdGKaPYNArh_cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455606254</pqid></control><display><type>article</type><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><source>IEEE Xplore Open Access Journals</source><creator>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</creator><creatorcontrib>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</creatorcontrib><description>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2890335</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Beads ; Biomedical monitoring ; digital signal processing ; Electrocardiography ; Electroencephalography ; Empirical analysis ; Filtering algorithms ; Finite impulse response filters ; Human motion ; Internet of Things ; Mobile EEG ; Monitoring ; movement artifact removal ; Noise reduction ; Sports ; sports e-health</subject><ispartof>IEEE access, 2019, Vol.7, p.7206-7217</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</citedby><cites>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</cites><orcidid>0000-0001-9990-1084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598718$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Butkeviciute, Egle</creatorcontrib><creatorcontrib>Bikulciene, Liepa</creatorcontrib><creatorcontrib>Sidekerskiene, Tatjana</creatorcontrib><creatorcontrib>Blazauskas, Tomas</creatorcontrib><creatorcontrib>Maskeliunas, Rytis</creatorcontrib><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</description><subject>Algorithms</subject><subject>Beads</subject><subject>Biomedical monitoring</subject><subject>digital signal processing</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Empirical analysis</subject><subject>Filtering algorithms</subject><subject>Finite impulse response filters</subject><subject>Human motion</subject><subject>Internet of Things</subject><subject>Mobile EEG</subject><subject>Monitoring</subject><subject>movement artifact removal</subject><subject>Noise reduction</subject><subject>Sports</subject><subject>sports e-health</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsNT-gr4EfN6a--WxlLUtVASrzyEms7Jl29RkFfvv3boizssMhzlnGL6imBI8IwSbu_liUW23M4qJnlFtMGPiohhRIk3JBJOX_-brYpLzDvele0moUbF6gn38dC2KNXqIn7CHQ4fmqYPa-Q7VMfXqa9MCqqolmh9ce8pNRs0BbY8xdRlVX5B8kyHfFFe1azNMfvu4eLmvnhercvO4XC_mm9JzrLtSS8NYDSFQr6VSEBQJQWOBVU0BOOdgHCE04EC5l1Ri7CQIkJQHqgJjbFysh9wQ3c4eU7N36WSja-yPENObdalrfAuWOKINYURJDhxobYzh2OMQlGfGC99n3Q5ZxxTfPyB3dhc_Uv9ktpQLIbGkgvdbbNjyKeacoP67SrA9E7ADAXsmYH8J9K7p4GoA4M-hhdGKaPYNArh_cw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Butkeviciute, Egle</creator><creator>Bikulciene, Liepa</creator><creator>Sidekerskiene, Tatjana</creator><creator>Blazauskas, Tomas</creator><creator>Maskeliunas, Rytis</creator><creator>Damasevicius, Robertas</creator><creator>Wei, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid></search><sort><creationdate>2019</creationdate><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><author>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Beads</topic><topic>Biomedical monitoring</topic><topic>digital signal processing</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Empirical analysis</topic><topic>Filtering algorithms</topic><topic>Finite impulse response filters</topic><topic>Human motion</topic><topic>Internet of Things</topic><topic>Mobile EEG</topic><topic>Monitoring</topic><topic>movement artifact removal</topic><topic>Noise reduction</topic><topic>Sports</topic><topic>sports e-health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butkeviciute, Egle</creatorcontrib><creatorcontrib>Bikulciene, Liepa</creatorcontrib><creatorcontrib>Sidekerskiene, Tatjana</creatorcontrib><creatorcontrib>Blazauskas, Tomas</creatorcontrib><creatorcontrib>Maskeliunas, Rytis</creatorcontrib><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butkeviciute, Egle</au><au>Bikulciene, Liepa</au><au>Sidekerskiene, Tatjana</au><au>Blazauskas, Tomas</au><au>Maskeliunas, Rytis</au><au>Damasevicius, Robertas</au><au>Wei, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>7206</spage><epage>7217</epage><pages>7206-7217</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2890335</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.7206-7217
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c
source IEEE Xplore Open Access Journals
subjects Algorithms
Beads
Biomedical monitoring
digital signal processing
Electrocardiography
Electroencephalography
Empirical analysis
Filtering algorithms
Finite impulse response filters
Human motion
Internet of Things
Mobile EEG
Monitoring
movement artifact removal
Noise reduction
Sports
sports e-health
title Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Movement%20Artefact%20for%20Mobile%20EEG%20Analysis%20in%20Sports%20Exercises&rft.jtitle=IEEE%20access&rft.au=Butkeviciute,%20Egle&rft.date=2019&rft.volume=7&rft.spage=7206&rft.epage=7217&rft.pages=7206-7217&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2890335&rft_dat=%3Cproquest_doaj_%3E2455606254%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455606254&rft_id=info:pmid/&rft_ieee_id=8598718&rfr_iscdi=true