Loading…
Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises
We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in re...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.7206-7217 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333 |
container_end_page | 7217 |
container_issue | |
container_start_page | 7206 |
container_title | IEEE access |
container_volume | 7 |
creator | Butkeviciute, Egle Bikulciene, Liepa Sidekerskiene, Tatjana Blazauskas, Tomas Maskeliunas, Rytis Damasevicius, Robertas Wei, Wei |
description | We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals. |
doi_str_mv | 10.1109/ACCESS.2018.2890335 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598718</ieee_id><doaj_id>oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c</doaj_id><sourcerecordid>2455606254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsNT-gr4EfN6a--WxlLUtVASrzyEms7Jl29RkFfvv3boizssMhzlnGL6imBI8IwSbu_liUW23M4qJnlFtMGPiohhRIk3JBJOX_-brYpLzDvele0moUbF6gn38dC2KNXqIn7CHQ4fmqYPa-Q7VMfXqa9MCqqolmh9ce8pNRs0BbY8xdRlVX5B8kyHfFFe1azNMfvu4eLmvnhercvO4XC_mm9JzrLtSS8NYDSFQr6VSEBQJQWOBVU0BOOdgHCE04EC5l1Ri7CQIkJQHqgJjbFysh9wQ3c4eU7N36WSja-yPENObdalrfAuWOKINYURJDhxobYzh2OMQlGfGC99n3Q5ZxxTfPyB3dhc_Uv9ktpQLIbGkgvdbbNjyKeacoP67SrA9E7ADAXsmYH8J9K7p4GoA4M-hhdGKaPYNArh_cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455606254</pqid></control><display><type>article</type><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><source>IEEE Xplore Open Access Journals</source><creator>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</creator><creatorcontrib>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</creatorcontrib><description>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2890335</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Beads ; Biomedical monitoring ; digital signal processing ; Electrocardiography ; Electroencephalography ; Empirical analysis ; Filtering algorithms ; Finite impulse response filters ; Human motion ; Internet of Things ; Mobile EEG ; Monitoring ; movement artifact removal ; Noise reduction ; Sports ; sports e-health</subject><ispartof>IEEE access, 2019, Vol.7, p.7206-7217</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</citedby><cites>FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</cites><orcidid>0000-0001-9990-1084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598718$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Butkeviciute, Egle</creatorcontrib><creatorcontrib>Bikulciene, Liepa</creatorcontrib><creatorcontrib>Sidekerskiene, Tatjana</creatorcontrib><creatorcontrib>Blazauskas, Tomas</creatorcontrib><creatorcontrib>Maskeliunas, Rytis</creatorcontrib><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</description><subject>Algorithms</subject><subject>Beads</subject><subject>Biomedical monitoring</subject><subject>digital signal processing</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Empirical analysis</subject><subject>Filtering algorithms</subject><subject>Finite impulse response filters</subject><subject>Human motion</subject><subject>Internet of Things</subject><subject>Mobile EEG</subject><subject>Monitoring</subject><subject>movement artifact removal</subject><subject>Noise reduction</subject><subject>Sports</subject><subject>sports e-health</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsNT-gr4EfN6a--WxlLUtVASrzyEms7Jl29RkFfvv3boizssMhzlnGL6imBI8IwSbu_liUW23M4qJnlFtMGPiohhRIk3JBJOX_-brYpLzDvele0moUbF6gn38dC2KNXqIn7CHQ4fmqYPa-Q7VMfXqa9MCqqolmh9ce8pNRs0BbY8xdRlVX5B8kyHfFFe1azNMfvu4eLmvnhercvO4XC_mm9JzrLtSS8NYDSFQr6VSEBQJQWOBVU0BOOdgHCE04EC5l1Ri7CQIkJQHqgJjbFysh9wQ3c4eU7N36WSja-yPENObdalrfAuWOKINYURJDhxobYzh2OMQlGfGC99n3Q5ZxxTfPyB3dhc_Uv9ktpQLIbGkgvdbbNjyKeacoP67SrA9E7ADAXsmYH8J9K7p4GoA4M-hhdGKaPYNArh_cw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Butkeviciute, Egle</creator><creator>Bikulciene, Liepa</creator><creator>Sidekerskiene, Tatjana</creator><creator>Blazauskas, Tomas</creator><creator>Maskeliunas, Rytis</creator><creator>Damasevicius, Robertas</creator><creator>Wei, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid></search><sort><creationdate>2019</creationdate><title>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</title><author>Butkeviciute, Egle ; Bikulciene, Liepa ; Sidekerskiene, Tatjana ; Blazauskas, Tomas ; Maskeliunas, Rytis ; Damasevicius, Robertas ; Wei, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Beads</topic><topic>Biomedical monitoring</topic><topic>digital signal processing</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Empirical analysis</topic><topic>Filtering algorithms</topic><topic>Finite impulse response filters</topic><topic>Human motion</topic><topic>Internet of Things</topic><topic>Mobile EEG</topic><topic>Monitoring</topic><topic>movement artifact removal</topic><topic>Noise reduction</topic><topic>Sports</topic><topic>sports e-health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butkeviciute, Egle</creatorcontrib><creatorcontrib>Bikulciene, Liepa</creatorcontrib><creatorcontrib>Sidekerskiene, Tatjana</creatorcontrib><creatorcontrib>Blazauskas, Tomas</creatorcontrib><creatorcontrib>Maskeliunas, Rytis</creatorcontrib><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butkeviciute, Egle</au><au>Bikulciene, Liepa</au><au>Sidekerskiene, Tatjana</au><au>Blazauskas, Tomas</au><au>Maskeliunas, Rytis</au><au>Damasevicius, Robertas</au><au>Wei, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>7206</spage><epage>7217</epage><pages>7206-7217</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present a method for the removal of movement artifacts from the recordings of electroencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of Things-based signal recording system to record physiological human signals [EEG, electrocardiography (ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters (cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of intrinsic mode functions derived from the sample movement signals by the application of empirical mode decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted movement artifacts and detrended EEG signals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2890335</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.7206-7217 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1a189131764e4e2f99940c0dd7c39c5c |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Beads Biomedical monitoring digital signal processing Electrocardiography Electroencephalography Empirical analysis Filtering algorithms Finite impulse response filters Human motion Internet of Things Mobile EEG Monitoring movement artifact removal Noise reduction Sports sports e-health |
title | Removal of Movement Artefact for Mobile EEG Analysis in Sports Exercises |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Movement%20Artefact%20for%20Mobile%20EEG%20Analysis%20in%20Sports%20Exercises&rft.jtitle=IEEE%20access&rft.au=Butkeviciute,%20Egle&rft.date=2019&rft.volume=7&rft.spage=7206&rft.epage=7217&rft.pages=7206-7217&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2890335&rft_dat=%3Cproquest_doaj_%3E2455606254%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-86933fedd2c8677ed71dd80507f2ee444e9a112d0d24c62600a6e5e624d27d333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455606254&rft_id=info:pmid/&rft_ieee_id=8598718&rfr_iscdi=true |