Loading…
Orientation of Liquid Crystalline Molecules on PDMS Surfaces and within PDMS Microfluidic Systems
The unique components of PDMS-based microfluidic systems are those combined with liquid crystalline materials. Their functionality, especially when it comes to optical applications, highly depends on the LC molecular arrangement. This work summarizes experimental investigations on the orientation of...
Saved in:
Published in: | Applied sciences 2021-12, Vol.11 (24), p.11593 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique components of PDMS-based microfluidic systems are those combined with liquid crystalline materials. Their functionality, especially when it comes to optical applications, highly depends on the LC molecular arrangement. This work summarizes experimental investigations on the orientation of molecules within LC:PDMS structures according to the manufacturing technologies. The availability of high-quality molds to pattern PDMS is a significant barrier to the creation of advanced microfluidic systems. The possibility of using inexpensive molds in the rapid and reproducible fabrication process has been particularly examined as an alternative to photolithography. Different geometries, including an innovative approach for the electrical control of the molecular arrangement within PDMS microchannels, are presented. These studies are critical for novel optofluidic systems, introducing further research on LC:PDMS waveguiding structures. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app112411593 |