Loading…
Future-Frame Prediction for Fast-Moving Objects with Motion Blur
We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, ma...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (16), p.4394 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3 |
container_end_page | |
container_issue | 16 |
container_start_page | 4394 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Lee, Dohae Oh, Young Jin Lee, In-Kwon |
description | We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears. |
doi_str_mv | 10.3390/s20164394 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693</doaj_id><sourcerecordid>2433241394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhq2qqFDg0DeI1Es5pHjsiZ1cqsKKbZFAcICz5djO4lU23toOiLcn7CLU5TSjmU-fRvMT8g3oT84bepoYBYG8wU_kAJBhWTNGP__X75OvKS0pZZzz-gvZ50zWICk9IL_nYx6jK-dRr1xxG531JvswFF2IxVynXF6HRz8sipt26UxOxZPPD8V12DDn_RiPyF6n--SO3-ohuZ9f3M3-llc3fy5nZ1elQRS55AIrKhvjwEjZYSVAONlIbHln21q3RlOjLYoKjDWCaldNU6QomGgAQPNDcrn12qCXah39SsdnFbRXm0GIC6Vj9qZ3aqJtw23VCWDIwNat1K00ElAaKxo-uX5tXeuxXTlr3JCj7neku5vBP6hFeFQSJQPJJsGPN0EM_0aXslr5ZFzf68GFMSmGnDOEKZEJ_f4BXYYxDtOrXinGsQIQE3WypUwMKUXXvR8DVL1mrN4z5i-G0pWT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432345116</pqid></control><display><type>article</type><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</creator><creatorcontrib>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</creatorcontrib><description>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20164394</identifier><identifier>PMID: 32781700</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Blurring ; Cameras ; Frames (data processing) ; future frame prediction ; High speed cameras ; machine physical reasoning ; Methods ; motion blur ; Neural networks ; Object motion ; Physical properties ; Physics ; Prediction models ; Principal components analysis ; Simulation</subject><ispartof>Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4394</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</citedby><cites>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2432345116/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2432345116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Lee, Dohae</creatorcontrib><creatorcontrib>Oh, Young Jin</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><title>Sensors (Basel, Switzerland)</title><description>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</description><subject>Artificial intelligence</subject><subject>Blurring</subject><subject>Cameras</subject><subject>Frames (data processing)</subject><subject>future frame prediction</subject><subject>High speed cameras</subject><subject>machine physical reasoning</subject><subject>Methods</subject><subject>motion blur</subject><subject>Neural networks</subject><subject>Object motion</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Simulation</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkcFO3DAQhq2qqFDg0DeI1Es5pHjsiZ1cqsKKbZFAcICz5djO4lU23toOiLcn7CLU5TSjmU-fRvMT8g3oT84bepoYBYG8wU_kAJBhWTNGP__X75OvKS0pZZzz-gvZ50zWICk9IL_nYx6jK-dRr1xxG531JvswFF2IxVynXF6HRz8sipt26UxOxZPPD8V12DDn_RiPyF6n--SO3-ohuZ9f3M3-llc3fy5nZ1elQRS55AIrKhvjwEjZYSVAONlIbHln21q3RlOjLYoKjDWCaldNU6QomGgAQPNDcrn12qCXah39SsdnFbRXm0GIC6Vj9qZ3aqJtw23VCWDIwNat1K00ElAaKxo-uX5tXeuxXTlr3JCj7neku5vBP6hFeFQSJQPJJsGPN0EM_0aXslr5ZFzf68GFMSmGnDOEKZEJ_f4BXYYxDtOrXinGsQIQE3WypUwMKUXXvR8DVL1mrN4z5i-G0pWT</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Lee, Dohae</creator><creator>Oh, Young Jin</creator><creator>Lee, In-Kwon</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200806</creationdate><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><author>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Blurring</topic><topic>Cameras</topic><topic>Frames (data processing)</topic><topic>future frame prediction</topic><topic>High speed cameras</topic><topic>machine physical reasoning</topic><topic>Methods</topic><topic>motion blur</topic><topic>Neural networks</topic><topic>Object motion</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dohae</creatorcontrib><creatorcontrib>Oh, Young Jin</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dohae</au><au>Oh, Young Jin</au><au>Lee, In-Kwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><spage>4394</spage><pages>4394-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32781700</pmid><doi>10.3390/s20164394</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4394 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Artificial intelligence Blurring Cameras Frames (data processing) future frame prediction High speed cameras machine physical reasoning Methods motion blur Neural networks Object motion Physical properties Physics Prediction models Principal components analysis Simulation |
title | Future-Frame Prediction for Fast-Moving Objects with Motion Blur |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future-Frame%20Prediction%20for%20Fast-Moving%20Objects%20with%20Motion%20Blur&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lee,%20Dohae&rft.date=2020-08-06&rft.volume=20&rft.issue=16&rft.spage=4394&rft.pages=4394-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20164394&rft_dat=%3Cproquest_doaj_%3E2433241394%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432345116&rft_id=info:pmid/32781700&rfr_iscdi=true |