Loading…

Future-Frame Prediction for Fast-Moving Objects with Motion Blur

We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, ma...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (16), p.4394
Main Authors: Lee, Dohae, Oh, Young Jin, Lee, In-Kwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3
cites cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3
container_end_page
container_issue 16
container_start_page 4394
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Lee, Dohae
Oh, Young Jin
Lee, In-Kwon
description We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.
doi_str_mv 10.3390/s20164394
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693</doaj_id><sourcerecordid>2433241394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhq2qqFDg0DeI1Es5pHjsiZ1cqsKKbZFAcICz5djO4lU23toOiLcn7CLU5TSjmU-fRvMT8g3oT84bepoYBYG8wU_kAJBhWTNGP__X75OvKS0pZZzz-gvZ50zWICk9IL_nYx6jK-dRr1xxG531JvswFF2IxVynXF6HRz8sipt26UxOxZPPD8V12DDn_RiPyF6n--SO3-ohuZ9f3M3-llc3fy5nZ1elQRS55AIrKhvjwEjZYSVAONlIbHln21q3RlOjLYoKjDWCaldNU6QomGgAQPNDcrn12qCXah39SsdnFbRXm0GIC6Vj9qZ3aqJtw23VCWDIwNat1K00ElAaKxo-uX5tXeuxXTlr3JCj7neku5vBP6hFeFQSJQPJJsGPN0EM_0aXslr5ZFzf68GFMSmGnDOEKZEJ_f4BXYYxDtOrXinGsQIQE3WypUwMKUXXvR8DVL1mrN4z5i-G0pWT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432345116</pqid></control><display><type>article</type><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</creator><creatorcontrib>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</creatorcontrib><description>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20164394</identifier><identifier>PMID: 32781700</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Blurring ; Cameras ; Frames (data processing) ; future frame prediction ; High speed cameras ; machine physical reasoning ; Methods ; motion blur ; Neural networks ; Object motion ; Physical properties ; Physics ; Prediction models ; Principal components analysis ; Simulation</subject><ispartof>Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4394</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</citedby><cites>FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2432345116/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2432345116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Lee, Dohae</creatorcontrib><creatorcontrib>Oh, Young Jin</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><title>Sensors (Basel, Switzerland)</title><description>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</description><subject>Artificial intelligence</subject><subject>Blurring</subject><subject>Cameras</subject><subject>Frames (data processing)</subject><subject>future frame prediction</subject><subject>High speed cameras</subject><subject>machine physical reasoning</subject><subject>Methods</subject><subject>motion blur</subject><subject>Neural networks</subject><subject>Object motion</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Simulation</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkcFO3DAQhq2qqFDg0DeI1Es5pHjsiZ1cqsKKbZFAcICz5djO4lU23toOiLcn7CLU5TSjmU-fRvMT8g3oT84bepoYBYG8wU_kAJBhWTNGP__X75OvKS0pZZzz-gvZ50zWICk9IL_nYx6jK-dRr1xxG531JvswFF2IxVynXF6HRz8sipt26UxOxZPPD8V12DDn_RiPyF6n--SO3-ohuZ9f3M3-llc3fy5nZ1elQRS55AIrKhvjwEjZYSVAONlIbHln21q3RlOjLYoKjDWCaldNU6QomGgAQPNDcrn12qCXah39SsdnFbRXm0GIC6Vj9qZ3aqJtw23VCWDIwNat1K00ElAaKxo-uX5tXeuxXTlr3JCj7neku5vBP6hFeFQSJQPJJsGPN0EM_0aXslr5ZFzf68GFMSmGnDOEKZEJ_f4BXYYxDtOrXinGsQIQE3WypUwMKUXXvR8DVL1mrN4z5i-G0pWT</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Lee, Dohae</creator><creator>Oh, Young Jin</creator><creator>Lee, In-Kwon</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200806</creationdate><title>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</title><author>Lee, Dohae ; Oh, Young Jin ; Lee, In-Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Blurring</topic><topic>Cameras</topic><topic>Frames (data processing)</topic><topic>future frame prediction</topic><topic>High speed cameras</topic><topic>machine physical reasoning</topic><topic>Methods</topic><topic>motion blur</topic><topic>Neural networks</topic><topic>Object motion</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dohae</creatorcontrib><creatorcontrib>Oh, Young Jin</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dohae</au><au>Oh, Young Jin</au><au>Lee, In-Kwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future-Frame Prediction for Fast-Moving Objects with Motion Blur</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><spage>4394</spage><pages>4394-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32781700</pmid><doi>10.3390/s20164394</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4394
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a3d93d5f612421d8b7ab7c7147cd693
source Publicly Available Content (ProQuest); PubMed Central
subjects Artificial intelligence
Blurring
Cameras
Frames (data processing)
future frame prediction
High speed cameras
machine physical reasoning
Methods
motion blur
Neural networks
Object motion
Physical properties
Physics
Prediction models
Principal components analysis
Simulation
title Future-Frame Prediction for Fast-Moving Objects with Motion Blur
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future-Frame%20Prediction%20for%20Fast-Moving%20Objects%20with%20Motion%20Blur&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lee,%20Dohae&rft.date=2020-08-06&rft.volume=20&rft.issue=16&rft.spage=4394&rft.pages=4394-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20164394&rft_dat=%3Cproquest_doaj_%3E2433241394%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-3645079ce1c77f45616e7974b3fdb8abca0cad4651cdc60ae5b8a4046269111a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432345116&rft_id=info:pmid/32781700&rfr_iscdi=true