Loading…
Preliminary Mechanical Analysis of Rubber-Cement Composites Suitable for Additive Process Construction
Additive manufacturing for cementitious materials represents the most attractive frontier in the modern context of Construction 4.0. In addition to the technological progress of printing systems, the development of functional and low environmental impact printable mixtures is one of the current chal...
Saved in:
Published in: | Journal of composites science 2020, Vol.4 (3), p.120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing for cementitious materials represents the most attractive frontier in the modern context of Construction 4.0. In addition to the technological progress of printing systems, the development of functional and low environmental impact printable mixtures is one of the current challenges of digital fabrication in building and architectural fields. This paper proposes a preliminary physical-mechanical analysis on environmentally friendly mortars, compatible with the extrusion-based printing process, made up of recycling rubber aggregates deriving from end-of-life tires. In this study, two groups of rubber particle samples (0–1 mm rubber powder and 2–4 mm rubber granules) were used to partially/totally replace the mineral fraction of the reference printable mixture. Four tire rubber powder-granules proportions were investigated and control mortar (100% sand) was also prepared to compare its properties with those of the rubber-cement samples in terms of printability properties, mechanical strength, ductility, and structural isotropy. Based on the experimental results, the rubber aggregates increase the mixture fluidity, promoting better inter-layer adhesion than the neat mix. This leads to greater mechanical isotropy. As already investigated in other research works on Rubber-Concrete technology, the addition of rubber particles increases the ductility of the material but reduces its mechanical strength. However, by correctly balancing the fine and coarse rubber fraction, promising physical-mechanical performances were demonstrated. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs4030120 |