Loading…
Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring
Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.146 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3 |
container_end_page | |
container_issue | 1 |
container_start_page | 146 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Van Duy, Lai Nguyet, To Thi Le, Dang Thi Thanh Van Duy, Nguyen Nguyen, Hugo Biasioli, Franco Tonezzer, Matteo Di Natale, Corrado Hoa, Nguyen Duc |
description | Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device’s performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain. |
doi_str_mv | 10.3390/nano13010146 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a7fb634778a474994bdc559c159b748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a7fb634778a474994bdc559c159b748</doaj_id><sourcerecordid>2761193735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3</originalsourceid><addsrcrecordid>eNpdkl9vFCEUxSdGE5u2b34AEl98cCx_h-HFZK22Nqk2sWtfCQN3t6wzMIUZm3576W6jXQkJBA6_czm5VfWG4A-MKXwSTIiEYYIJb15UBxRLVXOlyMtn-9fVcc4bXIYirBXsoPI_YhzQEoYRkpnmBGgxDDF4g85NRtcQckzok8ngUAxorJcPI9S9_wXohl4J9L2Y5luAKaMp3pvkMjqL0aHrMfrerAF9K6wpJh_WR9WrlekzHD-th9XPsy_L06_15dX5xenisrZc0ak2YBnprGnlqjOdosI5seKtAFomt9S1mPGOEGuVUVJQyyjpXCuZ4M7KxrHD6mLHddFs9Jj8YNKDjsbr7UFMa23S5G0Pmphi0jAuZWu4LAHxzlkhlCVCdZK3hfV-x8r3MM7dHu2zv1lsafOsS-UNlkX-cScv2gGchTAl0--92r8J_lav42-tWsoahgvg3RMgxbsZ8qQHny30vQkQ56ypbEjRSvno9fY_6SbOKZRktyqiWInk3wdsijknWP0thmD92Db6eduwP61VtdU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761193735</pqid></control><display><type>article</type><title>Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Van Duy, Lai ; Nguyet, To Thi ; Le, Dang Thi Thanh ; Van Duy, Nguyen ; Nguyen, Hugo ; Biasioli, Franco ; Tonezzer, Matteo ; Di Natale, Corrado ; Hoa, Nguyen Duc</creator><creatorcontrib>Van Duy, Lai ; Nguyet, To Thi ; Le, Dang Thi Thanh ; Van Duy, Nguyen ; Nguyen, Hugo ; Biasioli, Franco ; Tonezzer, Matteo ; Di Natale, Corrado ; Hoa, Nguyen Duc</creatorcontrib><description>Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device’s performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13010146</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Air monitoring ; Air pollution ; Ammonia ; amonia ; Emissions ; Engineering Science with specialization in Materials Science ; Engineering Science with specialization in Microsystems Technology ; Environmental protection ; Ethanol ; Food ; Food chains ; Food quality ; Food safety ; Food spoilage ; Food supply ; gas sensor ; Gas sensors ; Greenhouse gases ; Hazardous materials ; Low cost ; Low temperature ; Metal oxides ; Morphology ; N-type semiconductors ; nanosheet ; Nanosheets ; Occupational safety ; Operating temperature ; P-type semiconductors ; Pollution monitoring ; Porosity ; Power consumption ; Quality assessment ; Quality control ; Room temperature ; Scanning electron microscopy ; Selectivity ; Sensors ; Spectrum analysis ; Spoilage ; Supply chains ; Teknisk fysik med inriktning mot materialvetenskap ; Teknisk fysik med inriktning mot mikrosystemteknik ; Vanadium pentoxide</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.146</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3</citedby><cites>FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3</cites><orcidid>0000-0003-4694-4181 ; 0000-0001-5715-9686 ; 0000-0002-0543-4348 ; 0000-0001-5731-4244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761193735/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761193735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492607$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Duy, Lai</creatorcontrib><creatorcontrib>Nguyet, To Thi</creatorcontrib><creatorcontrib>Le, Dang Thi Thanh</creatorcontrib><creatorcontrib>Van Duy, Nguyen</creatorcontrib><creatorcontrib>Nguyen, Hugo</creatorcontrib><creatorcontrib>Biasioli, Franco</creatorcontrib><creatorcontrib>Tonezzer, Matteo</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><creatorcontrib>Hoa, Nguyen Duc</creatorcontrib><title>Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring</title><title>Nanomaterials (Basel, Switzerland)</title><description>Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device’s performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.</description><subject>Adsorption</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Ammonia</subject><subject>amonia</subject><subject>Emissions</subject><subject>Engineering Science with specialization in Materials Science</subject><subject>Engineering Science with specialization in Microsystems Technology</subject><subject>Environmental protection</subject><subject>Ethanol</subject><subject>Food</subject><subject>Food chains</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Food spoilage</subject><subject>Food supply</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Greenhouse gases</subject><subject>Hazardous materials</subject><subject>Low cost</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>N-type semiconductors</subject><subject>nanosheet</subject><subject>Nanosheets</subject><subject>Occupational safety</subject><subject>Operating temperature</subject><subject>P-type semiconductors</subject><subject>Pollution monitoring</subject><subject>Porosity</subject><subject>Power consumption</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Spoilage</subject><subject>Supply chains</subject><subject>Teknisk fysik med inriktning mot materialvetenskap</subject><subject>Teknisk fysik med inriktning mot mikrosystemteknik</subject><subject>Vanadium pentoxide</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl9vFCEUxSdGE5u2b34AEl98cCx_h-HFZK22Nqk2sWtfCQN3t6wzMIUZm3576W6jXQkJBA6_czm5VfWG4A-MKXwSTIiEYYIJb15UBxRLVXOlyMtn-9fVcc4bXIYirBXsoPI_YhzQEoYRkpnmBGgxDDF4g85NRtcQckzok8ngUAxorJcPI9S9_wXohl4J9L2Y5luAKaMp3pvkMjqL0aHrMfrerAF9K6wpJh_WR9WrlekzHD-th9XPsy_L06_15dX5xenisrZc0ak2YBnprGnlqjOdosI5seKtAFomt9S1mPGOEGuVUVJQyyjpXCuZ4M7KxrHD6mLHddFs9Jj8YNKDjsbr7UFMa23S5G0Pmphi0jAuZWu4LAHxzlkhlCVCdZK3hfV-x8r3MM7dHu2zv1lsafOsS-UNlkX-cScv2gGchTAl0--92r8J_lav42-tWsoahgvg3RMgxbsZ8qQHny30vQkQ56ypbEjRSvno9fY_6SbOKZRktyqiWInk3wdsijknWP0thmD92Db6eduwP61VtdU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Van Duy, Lai</creator><creator>Nguyet, To Thi</creator><creator>Le, Dang Thi Thanh</creator><creator>Van Duy, Nguyen</creator><creator>Nguyen, Hugo</creator><creator>Biasioli, Franco</creator><creator>Tonezzer, Matteo</creator><creator>Di Natale, Corrado</creator><creator>Hoa, Nguyen Duc</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4694-4181</orcidid><orcidid>https://orcid.org/0000-0001-5715-9686</orcidid><orcidid>https://orcid.org/0000-0002-0543-4348</orcidid><orcidid>https://orcid.org/0000-0001-5731-4244</orcidid></search><sort><creationdate>20230101</creationdate><title>Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring</title><author>Van Duy, Lai ; Nguyet, To Thi ; Le, Dang Thi Thanh ; Van Duy, Nguyen ; Nguyen, Hugo ; Biasioli, Franco ; Tonezzer, Matteo ; Di Natale, Corrado ; Hoa, Nguyen Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Ammonia</topic><topic>amonia</topic><topic>Emissions</topic><topic>Engineering Science with specialization in Materials Science</topic><topic>Engineering Science with specialization in Microsystems Technology</topic><topic>Environmental protection</topic><topic>Ethanol</topic><topic>Food</topic><topic>Food chains</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Food spoilage</topic><topic>Food supply</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Greenhouse gases</topic><topic>Hazardous materials</topic><topic>Low cost</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>N-type semiconductors</topic><topic>nanosheet</topic><topic>Nanosheets</topic><topic>Occupational safety</topic><topic>Operating temperature</topic><topic>P-type semiconductors</topic><topic>Pollution monitoring</topic><topic>Porosity</topic><topic>Power consumption</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Spoilage</topic><topic>Supply chains</topic><topic>Teknisk fysik med inriktning mot materialvetenskap</topic><topic>Teknisk fysik med inriktning mot mikrosystemteknik</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Duy, Lai</creatorcontrib><creatorcontrib>Nguyet, To Thi</creatorcontrib><creatorcontrib>Le, Dang Thi Thanh</creatorcontrib><creatorcontrib>Van Duy, Nguyen</creatorcontrib><creatorcontrib>Nguyen, Hugo</creatorcontrib><creatorcontrib>Biasioli, Franco</creatorcontrib><creatorcontrib>Tonezzer, Matteo</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><creatorcontrib>Hoa, Nguyen Duc</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Duy, Lai</au><au>Nguyet, To Thi</au><au>Le, Dang Thi Thanh</au><au>Van Duy, Nguyen</au><au>Nguyen, Hugo</au><au>Biasioli, Franco</au><au>Tonezzer, Matteo</au><au>Di Natale, Corrado</au><au>Hoa, Nguyen Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>146</spage><pages>146-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device’s performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/nano13010146</doi><orcidid>https://orcid.org/0000-0003-4694-4181</orcidid><orcidid>https://orcid.org/0000-0001-5715-9686</orcidid><orcidid>https://orcid.org/0000-0002-0543-4348</orcidid><orcidid>https://orcid.org/0000-0001-5731-4244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (1), p.146 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1a7fb634778a474994bdc559c159b748 |
source | PubMed Central (Open Access); ProQuest - Publicly Available Content Database |
subjects | Adsorption Air monitoring Air pollution Ammonia amonia Emissions Engineering Science with specialization in Materials Science Engineering Science with specialization in Microsystems Technology Environmental protection Ethanol Food Food chains Food quality Food safety Food spoilage Food supply gas sensor Gas sensors Greenhouse gases Hazardous materials Low cost Low temperature Metal oxides Morphology N-type semiconductors nanosheet Nanosheets Occupational safety Operating temperature P-type semiconductors Pollution monitoring Porosity Power consumption Quality assessment Quality control Room temperature Scanning electron microscopy Selectivity Sensors Spectrum analysis Spoilage Supply chains Teknisk fysik med inriktning mot materialvetenskap Teknisk fysik med inriktning mot mikrosystemteknik Vanadium pentoxide |
title | Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20Temperature%20Ammonia%20Gas%20Sensor%20Based%20on%20p-Type-like%20V2O5%20Nanosheets%20towards%20Food%20Spoilage%20Monitoring&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Van%20Duy,%20Lai&rft.date=2023-01-01&rft.volume=13&rft.issue=1&rft.spage=146&rft.pages=146-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13010146&rft_dat=%3Cproquest_doaj_%3E2761193735%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-aec31bca87fbab925dd5f485e25e24c2d8034b11cc9a9752c321bd87354dc76d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761193735&rft_id=info:pmid/&rfr_iscdi=true |