Loading…

Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction

At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and comple...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2022-11, Vol.7 (45), p.41732-41743
Main Authors: Shi, Xiuyong, Jiang, Degang, Qian, Weiwei, Liang, Yunfang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3
cites cdi_FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3
container_end_page 41743
container_issue 45
container_start_page 41732
container_title ACS omega
container_volume 7
creator Shi, Xiuyong
Jiang, Degang
Qian, Weiwei
Liang, Yunfang
description At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R 2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R 2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R 2 value of engine torque prediction is 0.9993, the R 2 value of exhaust gas temperature is 0.995, and the R 2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions.
doi_str_mv 10.1021/acsomega.2c05952
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a8ca40ff7cd4a76977d5b3456b76537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1a8ca40ff7cd4a76977d5b3456b76537</doaj_id><sourcerecordid>2738497081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSMEElXpnaOPHNhiO_FHLkhl1ZaqRVQIztbEnmS9SuzFTirBX4-7u0X0wGlm_N78RvKrqreMnjPK2QewOU44wDm3VLSCv6hOeKPoitVN_fKf_nV1lvOWUsqk5prLk-r3xW43eguzj4HEnswbJNew5OwhkPsULeZMvuGQSn20fMF5Ex35BBkdKTOQdZw6H8p0iyngSK6WYPc0H8hlGIpE7jH1MU0QbOkTOr83vKle9TBmPDvW0-rH1eX39efV3dfrm_XF3QoaJecVihbazknbidbZXgjKpWAWuEaBtFNW11YB7TVrhGbOtVr0CE5LTpHX1tWn1c2B6yJszS75CdIvE8Gb_UNMg4E0ezuiYaAtNLTvlXUNKNkq5URXN0J2SopaFdbHA2u3dBM6i2FOMD6DPleC35ghPphWKtpSXgDvjoAUfy6YZzP5bHEcIWBcsuGq1k2rqGbFSg9Wm2LOCfu_Zxg1j7Gbp9jNMfay8v6wUhSzjUsK5WP_b_8DM9izsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738497081</pqid></control><display><type>article</type><title>Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction</title><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Shi, Xiuyong ; Jiang, Degang ; Qian, Weiwei ; Liang, Yunfang</creator><creatorcontrib>Shi, Xiuyong ; Jiang, Degang ; Qian, Weiwei ; Liang, Yunfang</creatorcontrib><description>At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R 2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R 2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R 2 value of engine torque prediction is 0.9993, the R 2 value of exhaust gas temperature is 0.995, and the R 2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.2c05952</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2022-11, Vol.7 (45), p.41732-41743</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3</citedby><cites>FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3</cites><orcidid>0000-0002-3671-9928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.2c05952$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.2c05952$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27079,27923,27924,53790,53792,56761,56811</link.rule.ids></links><search><creatorcontrib>Shi, Xiuyong</creatorcontrib><creatorcontrib>Jiang, Degang</creatorcontrib><creatorcontrib>Qian, Weiwei</creatorcontrib><creatorcontrib>Liang, Yunfang</creatorcontrib><title>Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R 2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R 2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R 2 value of engine torque prediction is 0.9993, the R 2 value of exhaust gas temperature is 0.995, and the R 2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v1DAQxSMEElXpnaOPHNhiO_FHLkhl1ZaqRVQIztbEnmS9SuzFTirBX4-7u0X0wGlm_N78RvKrqreMnjPK2QewOU44wDm3VLSCv6hOeKPoitVN_fKf_nV1lvOWUsqk5prLk-r3xW43eguzj4HEnswbJNew5OwhkPsULeZMvuGQSn20fMF5Ex35BBkdKTOQdZw6H8p0iyngSK6WYPc0H8hlGIpE7jH1MU0QbOkTOr83vKle9TBmPDvW0-rH1eX39efV3dfrm_XF3QoaJecVihbazknbidbZXgjKpWAWuEaBtFNW11YB7TVrhGbOtVr0CE5LTpHX1tWn1c2B6yJszS75CdIvE8Gb_UNMg4E0ezuiYaAtNLTvlXUNKNkq5URXN0J2SopaFdbHA2u3dBM6i2FOMD6DPleC35ghPphWKtpSXgDvjoAUfy6YZzP5bHEcIWBcsuGq1k2rqGbFSg9Wm2LOCfu_Zxg1j7Gbp9jNMfay8v6wUhSzjUsK5WP_b_8DM9izsw</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Shi, Xiuyong</creator><creator>Jiang, Degang</creator><creator>Qian, Weiwei</creator><creator>Liang, Yunfang</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3671-9928</orcidid></search><sort><creationdate>20221115</creationdate><title>Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction</title><author>Shi, Xiuyong ; Jiang, Degang ; Qian, Weiwei ; Liang, Yunfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiuyong</creatorcontrib><creatorcontrib>Jiang, Degang</creatorcontrib><creatorcontrib>Qian, Weiwei</creatorcontrib><creatorcontrib>Liang, Yunfang</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiuyong</au><au>Jiang, Degang</au><au>Qian, Weiwei</au><au>Liang, Yunfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>7</volume><issue>45</issue><spage>41732</spage><epage>41743</epage><pages>41732-41743</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R 2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R 2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R 2 value of engine torque prediction is 0.9993, the R 2 value of exhaust gas temperature is 0.995, and the R 2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsomega.2c05952</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3671-9928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2022-11, Vol.7 (45), p.41732-41743
issn 2470-1343
2470-1343
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a8ca40ff7cd4a76977d5b3456b76537
source American Chemical Society (ACS) Open Access; PubMed Central
title Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Gaussian%20Process%20Regression%20Method%20Based%20on%20a%20Combined%20Kernel%20Function%20in%20Engine%20Performance%20Prediction&rft.jtitle=ACS%20omega&rft.au=Shi,%20Xiuyong&rft.date=2022-11-15&rft.volume=7&rft.issue=45&rft.spage=41732&rft.epage=41743&rft.pages=41732-41743&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.2c05952&rft_dat=%3Cproquest_doaj_%3E2738497081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-e59a9bd6cb59dcf5502651ca28e5e0b7c83c7a0f814581dd985fead8620e23cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738497081&rft_id=info:pmid/&rfr_iscdi=true