Loading…

Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh

The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study o...

Full description

Saved in:
Bibliographic Details
Published in:Applied bionics and biomechanics 2021, Vol.2021, p.1-19
Main Authors: Quan, Xinyu, Zhao, Ximing, Zhang, Shijie, Zhou, Jie, Yu, Nan, Hou, Xuyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3
cites cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3
container_end_page 19
container_issue
container_start_page 1
container_title Applied bionics and biomechanics
container_volume 2021
creator Quan, Xinyu
Zhao, Ximing
Zhang, Shijie
Zhou, Jie
Yu, Nan
Hou, Xuyan
description The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.
doi_str_mv 10.1155/2021/2807236
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696851717</galeid><doaj_id>oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0</doaj_id><sourcerecordid>A696851717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</originalsourceid><addsrcrecordid>eNp9kluLUzEQgA-iuOvqmz_ggC-Cdjf3y4uwrreFLYK6z2GaS0_KabImp0r_vem2KBWRPCRMvvmGSabrnmN0jjHnFwQRfEEUkoSKB90plpzNCEb0YTtjKWaEEnLSPal1hRDHDNHH3QllXDOq9Wk3_-Krh2KHPqd-Gnx_m9xmhCmXbT_PU2zRubcDpFjXfQ79Vw9DLtX3b6F6t0t6t02wjrZhdXjaPQowVv_ssJ91tx_ef7v6NLv5_PH66vJmZjlX08wtqLRecaepZ2ADV14yyYUIC-wpECsANKaOAMeBMQVCWCRYAL0QSDugZ9313usyrMxdiWsoW5MhmvtALksDZYp29AaDpjI4i5RwTGKmtcABBHZIBR4Caq43e9fdZrH2zvo0FRiPpMc3KQ5mmX8YxaTiWjXBy4Og5O8bXyezjtX6cYTk86YawqWSQjEkGvriL3SVNyW1p7qnBKOIkj_UEloDMYXc6tqd1FwKLRTHEstGnf-Dasv59h05-RBb_Cjh9T7Bllxr8eF3jxiZ3SiZ3SiZwyg1_NUeH2Jy8DP-n_4FtFzEUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578643032</pqid></control><display><type>article</type><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan</creator><contributor>MO, Fuhao ; Fuhao MO</contributor><creatorcontrib>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan ; MO, Fuhao ; Fuhao MO</creatorcontrib><description>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</description><identifier>ISSN: 1176-2322</identifier><identifier>EISSN: 1754-2103</identifier><identifier>DOI: 10.1155/2021/2807236</identifier><identifier>PMID: 34594399</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Analysis ; Bionics ; Coordinate transformations ; Design optimization ; Dynamic models ; Experiments ; Finite element method ; Fluid dynamics ; Fluid-structure interaction ; Hippocampus hippocampus ; Kinematics ; Maneuverability ; Miniaturization ; Seawater ; Simulation ; Underwater vehicles ; Velocity</subject><ispartof>Applied bionics and biomechanics, 2021, Vol.2021, p.1-19</ispartof><rights>Copyright © 2021 Xinyu Quan et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Xinyu Quan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Xinyu Quan et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</citedby><cites>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</cites><orcidid>0000-0002-6798-6113 ; 0000-0002-0187-7459 ; 0000-0003-1949-4509 ; 0000-0002-1497-133X ; 0000-0002-0235-625X ; 0000-0003-2705-0625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2578643032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2578643032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>MO, Fuhao</contributor><contributor>Fuhao MO</contributor><creatorcontrib>Quan, Xinyu</creatorcontrib><creatorcontrib>Zhao, Ximing</creatorcontrib><creatorcontrib>Zhang, Shijie</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Hou, Xuyan</creatorcontrib><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><title>Applied bionics and biomechanics</title><description>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</description><subject>Analysis</subject><subject>Bionics</subject><subject>Coordinate transformations</subject><subject>Design optimization</subject><subject>Dynamic models</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid-structure interaction</subject><subject>Hippocampus hippocampus</subject><subject>Kinematics</subject><subject>Maneuverability</subject><subject>Miniaturization</subject><subject>Seawater</subject><subject>Simulation</subject><subject>Underwater vehicles</subject><subject>Velocity</subject><issn>1176-2322</issn><issn>1754-2103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kluLUzEQgA-iuOvqmz_ggC-Cdjf3y4uwrreFLYK6z2GaS0_KabImp0r_vem2KBWRPCRMvvmGSabrnmN0jjHnFwQRfEEUkoSKB90plpzNCEb0YTtjKWaEEnLSPal1hRDHDNHH3QllXDOq9Wk3_-Krh2KHPqd-Gnx_m9xmhCmXbT_PU2zRubcDpFjXfQ79Vw9DLtX3b6F6t0t6t02wjrZhdXjaPQowVv_ssJ91tx_ef7v6NLv5_PH66vJmZjlX08wtqLRecaepZ2ADV14yyYUIC-wpECsANKaOAMeBMQVCWCRYAL0QSDugZ9313usyrMxdiWsoW5MhmvtALksDZYp29AaDpjI4i5RwTGKmtcABBHZIBR4Caq43e9fdZrH2zvo0FRiPpMc3KQ5mmX8YxaTiWjXBy4Og5O8bXyezjtX6cYTk86YawqWSQjEkGvriL3SVNyW1p7qnBKOIkj_UEloDMYXc6tqd1FwKLRTHEstGnf-Dasv59h05-RBb_Cjh9T7Bllxr8eF3jxiZ3SiZ3SiZwyg1_NUeH2Jy8DP-n_4FtFzEUg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Quan, Xinyu</creator><creator>Zhao, Ximing</creator><creator>Zhang, Shijie</creator><creator>Zhou, Jie</creator><creator>Yu, Nan</creator><creator>Hou, Xuyan</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7TK</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6798-6113</orcidid><orcidid>https://orcid.org/0000-0002-0187-7459</orcidid><orcidid>https://orcid.org/0000-0003-1949-4509</orcidid><orcidid>https://orcid.org/0000-0002-1497-133X</orcidid><orcidid>https://orcid.org/0000-0002-0235-625X</orcidid><orcidid>https://orcid.org/0000-0003-2705-0625</orcidid></search><sort><creationdate>2021</creationdate><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><author>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Bionics</topic><topic>Coordinate transformations</topic><topic>Design optimization</topic><topic>Dynamic models</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid-structure interaction</topic><topic>Hippocampus hippocampus</topic><topic>Kinematics</topic><topic>Maneuverability</topic><topic>Miniaturization</topic><topic>Seawater</topic><topic>Simulation</topic><topic>Underwater vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Xinyu</creatorcontrib><creatorcontrib>Zhao, Ximing</creatorcontrib><creatorcontrib>Zhang, Shijie</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Hou, Xuyan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied bionics and biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Xinyu</au><au>Zhao, Ximing</au><au>Zhang, Shijie</au><au>Zhou, Jie</au><au>Yu, Nan</au><au>Hou, Xuyan</au><au>MO, Fuhao</au><au>Fuhao MO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</atitle><jtitle>Applied bionics and biomechanics</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1176-2322</issn><eissn>1754-2103</eissn><abstract>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><pmid>34594399</pmid><doi>10.1155/2021/2807236</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6798-6113</orcidid><orcidid>https://orcid.org/0000-0002-0187-7459</orcidid><orcidid>https://orcid.org/0000-0003-1949-4509</orcidid><orcidid>https://orcid.org/0000-0002-1497-133X</orcidid><orcidid>https://orcid.org/0000-0002-0235-625X</orcidid><orcidid>https://orcid.org/0000-0003-2705-0625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1176-2322
ispartof Applied bionics and biomechanics, 2021, Vol.2021, p.1-19
issn 1176-2322
1754-2103
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0
source Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Analysis
Bionics
Coordinate transformations
Design optimization
Dynamic models
Experiments
Finite element method
Fluid dynamics
Fluid-structure interaction
Hippocampus hippocampus
Kinematics
Maneuverability
Miniaturization
Seawater
Simulation
Underwater vehicles
Velocity
title Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Undulatory%20Motion%20Mechanism%20of%20Seahorse%20Based%20on%20Dynamic%20Mesh&rft.jtitle=Applied%20bionics%20and%20biomechanics&rft.au=Quan,%20Xinyu&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1176-2322&rft.eissn=1754-2103&rft_id=info:doi/10.1155/2021/2807236&rft_dat=%3Cgale_doaj_%3EA696851717%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578643032&rft_id=info:pmid/34594399&rft_galeid=A696851717&rfr_iscdi=true