Loading…
Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh
The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study o...
Saved in:
Published in: | Applied bionics and biomechanics 2021, Vol.2021, p.1-19 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3 |
container_end_page | 19 |
container_issue | |
container_start_page | 1 |
container_title | Applied bionics and biomechanics |
container_volume | 2021 |
creator | Quan, Xinyu Zhao, Ximing Zhang, Shijie Zhou, Jie Yu, Nan Hou, Xuyan |
description | The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles. |
doi_str_mv | 10.1155/2021/2807236 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696851717</galeid><doaj_id>oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0</doaj_id><sourcerecordid>A696851717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</originalsourceid><addsrcrecordid>eNp9kluLUzEQgA-iuOvqmz_ggC-Cdjf3y4uwrreFLYK6z2GaS0_KabImp0r_vem2KBWRPCRMvvmGSabrnmN0jjHnFwQRfEEUkoSKB90plpzNCEb0YTtjKWaEEnLSPal1hRDHDNHH3QllXDOq9Wk3_-Krh2KHPqd-Gnx_m9xmhCmXbT_PU2zRubcDpFjXfQ79Vw9DLtX3b6F6t0t6t02wjrZhdXjaPQowVv_ssJ91tx_ef7v6NLv5_PH66vJmZjlX08wtqLRecaepZ2ADV14yyYUIC-wpECsANKaOAMeBMQVCWCRYAL0QSDugZ9313usyrMxdiWsoW5MhmvtALksDZYp29AaDpjI4i5RwTGKmtcABBHZIBR4Caq43e9fdZrH2zvo0FRiPpMc3KQ5mmX8YxaTiWjXBy4Og5O8bXyezjtX6cYTk86YawqWSQjEkGvriL3SVNyW1p7qnBKOIkj_UEloDMYXc6tqd1FwKLRTHEstGnf-Dasv59h05-RBb_Cjh9T7Bllxr8eF3jxiZ3SiZ3SiZwyg1_NUeH2Jy8DP-n_4FtFzEUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578643032</pqid></control><display><type>article</type><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan</creator><contributor>MO, Fuhao ; Fuhao MO</contributor><creatorcontrib>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan ; MO, Fuhao ; Fuhao MO</creatorcontrib><description>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</description><identifier>ISSN: 1176-2322</identifier><identifier>EISSN: 1754-2103</identifier><identifier>DOI: 10.1155/2021/2807236</identifier><identifier>PMID: 34594399</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Analysis ; Bionics ; Coordinate transformations ; Design optimization ; Dynamic models ; Experiments ; Finite element method ; Fluid dynamics ; Fluid-structure interaction ; Hippocampus hippocampus ; Kinematics ; Maneuverability ; Miniaturization ; Seawater ; Simulation ; Underwater vehicles ; Velocity</subject><ispartof>Applied bionics and biomechanics, 2021, Vol.2021, p.1-19</ispartof><rights>Copyright © 2021 Xinyu Quan et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Xinyu Quan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Xinyu Quan et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</citedby><cites>FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</cites><orcidid>0000-0002-6798-6113 ; 0000-0002-0187-7459 ; 0000-0003-1949-4509 ; 0000-0002-1497-133X ; 0000-0002-0235-625X ; 0000-0003-2705-0625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2578643032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2578643032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>MO, Fuhao</contributor><contributor>Fuhao MO</contributor><creatorcontrib>Quan, Xinyu</creatorcontrib><creatorcontrib>Zhao, Ximing</creatorcontrib><creatorcontrib>Zhang, Shijie</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Hou, Xuyan</creatorcontrib><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><title>Applied bionics and biomechanics</title><description>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</description><subject>Analysis</subject><subject>Bionics</subject><subject>Coordinate transformations</subject><subject>Design optimization</subject><subject>Dynamic models</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid-structure interaction</subject><subject>Hippocampus hippocampus</subject><subject>Kinematics</subject><subject>Maneuverability</subject><subject>Miniaturization</subject><subject>Seawater</subject><subject>Simulation</subject><subject>Underwater vehicles</subject><subject>Velocity</subject><issn>1176-2322</issn><issn>1754-2103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kluLUzEQgA-iuOvqmz_ggC-Cdjf3y4uwrreFLYK6z2GaS0_KabImp0r_vem2KBWRPCRMvvmGSabrnmN0jjHnFwQRfEEUkoSKB90plpzNCEb0YTtjKWaEEnLSPal1hRDHDNHH3QllXDOq9Wk3_-Krh2KHPqd-Gnx_m9xmhCmXbT_PU2zRubcDpFjXfQ79Vw9DLtX3b6F6t0t6t02wjrZhdXjaPQowVv_ssJ91tx_ef7v6NLv5_PH66vJmZjlX08wtqLRecaepZ2ADV14yyYUIC-wpECsANKaOAMeBMQVCWCRYAL0QSDugZ9313usyrMxdiWsoW5MhmvtALksDZYp29AaDpjI4i5RwTGKmtcABBHZIBR4Caq43e9fdZrH2zvo0FRiPpMc3KQ5mmX8YxaTiWjXBy4Og5O8bXyezjtX6cYTk86YawqWSQjEkGvriL3SVNyW1p7qnBKOIkj_UEloDMYXc6tqd1FwKLRTHEstGnf-Dasv59h05-RBb_Cjh9T7Bllxr8eF3jxiZ3SiZ3SiZwyg1_NUeH2Jy8DP-n_4FtFzEUg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Quan, Xinyu</creator><creator>Zhao, Ximing</creator><creator>Zhang, Shijie</creator><creator>Zhou, Jie</creator><creator>Yu, Nan</creator><creator>Hou, Xuyan</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7TK</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6798-6113</orcidid><orcidid>https://orcid.org/0000-0002-0187-7459</orcidid><orcidid>https://orcid.org/0000-0003-1949-4509</orcidid><orcidid>https://orcid.org/0000-0002-1497-133X</orcidid><orcidid>https://orcid.org/0000-0002-0235-625X</orcidid><orcidid>https://orcid.org/0000-0003-2705-0625</orcidid></search><sort><creationdate>2021</creationdate><title>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</title><author>Quan, Xinyu ; Zhao, Ximing ; Zhang, Shijie ; Zhou, Jie ; Yu, Nan ; Hou, Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Bionics</topic><topic>Coordinate transformations</topic><topic>Design optimization</topic><topic>Dynamic models</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid-structure interaction</topic><topic>Hippocampus hippocampus</topic><topic>Kinematics</topic><topic>Maneuverability</topic><topic>Miniaturization</topic><topic>Seawater</topic><topic>Simulation</topic><topic>Underwater vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Xinyu</creatorcontrib><creatorcontrib>Zhao, Ximing</creatorcontrib><creatorcontrib>Zhang, Shijie</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Hou, Xuyan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied bionics and biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Xinyu</au><au>Zhao, Ximing</au><au>Zhang, Shijie</au><au>Zhou, Jie</au><au>Yu, Nan</au><au>Hou, Xuyan</au><au>MO, Fuhao</au><au>Fuhao MO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh</atitle><jtitle>Applied bionics and biomechanics</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1176-2322</issn><eissn>1754-2103</eissn><abstract>The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><pmid>34594399</pmid><doi>10.1155/2021/2807236</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6798-6113</orcidid><orcidid>https://orcid.org/0000-0002-0187-7459</orcidid><orcidid>https://orcid.org/0000-0003-1949-4509</orcidid><orcidid>https://orcid.org/0000-0002-1497-133X</orcidid><orcidid>https://orcid.org/0000-0002-0235-625X</orcidid><orcidid>https://orcid.org/0000-0003-2705-0625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1176-2322 |
ispartof | Applied bionics and biomechanics, 2021, Vol.2021, p.1-19 |
issn | 1176-2322 1754-2103 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1a937fdc086d47149961fa61d08f5ff0 |
source | Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Analysis Bionics Coordinate transformations Design optimization Dynamic models Experiments Finite element method Fluid dynamics Fluid-structure interaction Hippocampus hippocampus Kinematics Maneuverability Miniaturization Seawater Simulation Underwater vehicles Velocity |
title | Research on the Undulatory Motion Mechanism of Seahorse Based on Dynamic Mesh |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Undulatory%20Motion%20Mechanism%20of%20Seahorse%20Based%20on%20Dynamic%20Mesh&rft.jtitle=Applied%20bionics%20and%20biomechanics&rft.au=Quan,%20Xinyu&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1176-2322&rft.eissn=1754-2103&rft_id=info:doi/10.1155/2021/2807236&rft_dat=%3Cgale_doaj_%3EA696851717%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-db37ce85d93e4acf58e747566fb1e3a2c6aa913d2a51f448a66c064fa9b609da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578643032&rft_id=info:pmid/34594399&rft_galeid=A696851717&rfr_iscdi=true |