Loading…

An Anti-Electromagnetic Attack PUF Based on a Configurable Ring Oscillator for Wireless Sensor Networks

Wireless sensor networks (WSNs) are an emerging technology employed in some crucial applications. However, limited resources and physical exposure to attackers make security a challenging issue for a WSN. Ring oscillator-based physical unclonable function (RO PUF) is a potential option to protect th...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2017-09, Vol.17 (9), p.2118
Main Authors: Lu, Zhaojun, Li, Dongfang, Liu, Hailong, Gong, Mingyang, Liu, Zhenglin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless sensor networks (WSNs) are an emerging technology employed in some crucial applications. However, limited resources and physical exposure to attackers make security a challenging issue for a WSN. Ring oscillator-based physical unclonable function (RO PUF) is a potential option to protect the security of sensor nodes because it is able to generate random responses efficiently for a key extraction mechanism, which prevents the non-volatile memory from storing secret keys. In order to deploy RO PUF in a WSN, hardware efficiency, randomness, uniqueness, and reliability should be taken into account. Besides, the resistance to electromagnetic (EM) analysis attack is important to guarantee the security of RO PUF itself. In this paper, we propose a novel architecture of configurable RO PUF based on exclusive-or (XOR) gates. First, it dramatically increases the hardware efficiency compared with other types of RO PUFs. Second, it mitigates the vulnerability to EM analysis attack by placing the adjacent RO arrays in accordance with the cosine wave and sine wave so that the frequency of each RO cannot be detected. We implement our proposal in XINLINX A-7 field programmable gate arrays (FPGAs) and conduct a set of experiments to evaluate the quality of the responses. The results show that responses pass the National Institute of Standards and Technology (NIST) statistical test and have good uniqueness and reliability under different environments. Therefore, the proposed configurable RO PUF is suitable to establish a key extraction mechanism in a WSN.
ISSN:1424-8220
1424-8220
DOI:10.3390/s17092118