Loading…

Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging

This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is c...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2024-06, Vol.14 (12), p.1243
Main Authors: Steinberg, Rebecca, Meehan, Jack, Tavrow, Doran, Maguluri, Gopi, Grimble, John, Primrose, Michael, Iftimia, Nicusor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c517t-1419b976a8b261e3c1c59f6de67ebab31abbe0276c2f3e5881826965463f48b03
container_end_page
container_issue 12
container_start_page 1243
container_title Diagnostics (Basel)
container_volume 14
creator Steinberg, Rebecca
Meehan, Jack
Tavrow, Doran
Maguluri, Gopi
Grimble, John
Primrose, Michael
Iftimia, Nicusor
description This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.
doi_str_mv 10.3390/diagnostics14121243
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1a9c4621244a4e508cc85cfb72c6aa9b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799445189</galeid><doaj_id>oai_doaj_org_article_1a9c4621244a4e508cc85cfb72c6aa9b</doaj_id><sourcerecordid>A799445189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-1419b976a8b261e3c1c59f6de67ebab31abbe0276c2f3e5881826965463f48b03</originalsourceid><addsrcrecordid>eNptUk1P3DAQjapWBVF-AVIVqZdeAv6OfapWq0JXWsQFzpbtTIJXiU3jZCv-fb0spSzClmxr5r3n8fMUxRlG55QqdNF404WYJu8SZphgwuiH4pigmleMYfnx1fmoOE1pg_JQmErCPxdHVCoiBVfHxdUiJUjJh65cz3m59HaMyafyj5_uy-t1lfM-TdCU1z74wfT9Y7kKW5P8Fsqb5W25GkyX2V-KT63pE5w-7yfF3eXP2-Wvan1ztVou1pXjuJ6qXKuyqhZGWiIwUIcdV61oQNRgjaXYWAuI1MKRlgKXEksilOBM0JZJi-hJsdrrNtFs9MOYSxofdTRePwXi2GkzZld60Ngox8TOGmYYcCSdk9y1tiZOGKNs1vqx13qY7QCNgzCNpj8QPcwEf6-7uNUYE0QEqbPC92eFMf6eIU168MlB35sAcU6aoppIxJSUGfrtDXQT5zFkr55QFHHK1X9UZ_ILfGhjvtjtRPWiVooxjuUOdf4OKs8GBu9igNbn-AGB7gkuf24aoX15JEZ610_6nX7KrK-v_Xnh_Ose-hfbCMaB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072305359</pqid></control><display><type>article</type><title>Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Steinberg, Rebecca ; Meehan, Jack ; Tavrow, Doran ; Maguluri, Gopi ; Grimble, John ; Primrose, Michael ; Iftimia, Nicusor</creator><creatorcontrib>Steinberg, Rebecca ; Meehan, Jack ; Tavrow, Doran ; Maguluri, Gopi ; Grimble, John ; Primrose, Michael ; Iftimia, Nicusor</creatorcontrib><description>This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics14121243</identifier><identifier>PMID: 38928659</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace industry ; Biopsy ; Catheters ; Fiber optics ; Fibrosis ; idiopathic lung fibrosis ; Inflammation ; Light ; Lung diseases ; Lungs ; machine learning ; Morphology ; Pneumothorax ; polarization sensitive optical coherence tomography imaging ; Pulmonary fibrosis ; Tomography</subject><ispartof>Diagnostics (Basel), 2024-06, Vol.14 (12), p.1243</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c517t-1419b976a8b261e3c1c59f6de67ebab31abbe0276c2f3e5881826965463f48b03</cites><orcidid>0000-0002-7713-6972 ; 0009-0006-0492-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072305359/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072305359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38928659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinberg, Rebecca</creatorcontrib><creatorcontrib>Meehan, Jack</creatorcontrib><creatorcontrib>Tavrow, Doran</creatorcontrib><creatorcontrib>Maguluri, Gopi</creatorcontrib><creatorcontrib>Grimble, John</creatorcontrib><creatorcontrib>Primrose, Michael</creatorcontrib><creatorcontrib>Iftimia, Nicusor</creatorcontrib><title>Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.</description><subject>Aerospace industry</subject><subject>Biopsy</subject><subject>Catheters</subject><subject>Fiber optics</subject><subject>Fibrosis</subject><subject>idiopathic lung fibrosis</subject><subject>Inflammation</subject><subject>Light</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>machine learning</subject><subject>Morphology</subject><subject>Pneumothorax</subject><subject>polarization sensitive optical coherence tomography imaging</subject><subject>Pulmonary fibrosis</subject><subject>Tomography</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1P3DAQjapWBVF-AVIVqZdeAv6OfapWq0JXWsQFzpbtTIJXiU3jZCv-fb0spSzClmxr5r3n8fMUxRlG55QqdNF404WYJu8SZphgwuiH4pigmleMYfnx1fmoOE1pg_JQmErCPxdHVCoiBVfHxdUiJUjJh65cz3m59HaMyafyj5_uy-t1lfM-TdCU1z74wfT9Y7kKW5P8Fsqb5W25GkyX2V-KT63pE5w-7yfF3eXP2-Wvan1ztVou1pXjuJ6qXKuyqhZGWiIwUIcdV61oQNRgjaXYWAuI1MKRlgKXEksilOBM0JZJi-hJsdrrNtFs9MOYSxofdTRePwXi2GkzZld60Ngox8TOGmYYcCSdk9y1tiZOGKNs1vqx13qY7QCNgzCNpj8QPcwEf6-7uNUYE0QEqbPC92eFMf6eIU168MlB35sAcU6aoppIxJSUGfrtDXQT5zFkr55QFHHK1X9UZ_ILfGhjvtjtRPWiVooxjuUOdf4OKs8GBu9igNbn-AGB7gkuf24aoX15JEZ610_6nX7KrK-v_Xnh_Ose-hfbCMaB</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Steinberg, Rebecca</creator><creator>Meehan, Jack</creator><creator>Tavrow, Doran</creator><creator>Maguluri, Gopi</creator><creator>Grimble, John</creator><creator>Primrose, Michael</creator><creator>Iftimia, Nicusor</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7713-6972</orcidid><orcidid>https://orcid.org/0009-0006-0492-7913</orcidid></search><sort><creationdate>20240601</creationdate><title>Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging</title><author>Steinberg, Rebecca ; Meehan, Jack ; Tavrow, Doran ; Maguluri, Gopi ; Grimble, John ; Primrose, Michael ; Iftimia, Nicusor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-1419b976a8b261e3c1c59f6de67ebab31abbe0276c2f3e5881826965463f48b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace industry</topic><topic>Biopsy</topic><topic>Catheters</topic><topic>Fiber optics</topic><topic>Fibrosis</topic><topic>idiopathic lung fibrosis</topic><topic>Inflammation</topic><topic>Light</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>machine learning</topic><topic>Morphology</topic><topic>Pneumothorax</topic><topic>polarization sensitive optical coherence tomography imaging</topic><topic>Pulmonary fibrosis</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinberg, Rebecca</creatorcontrib><creatorcontrib>Meehan, Jack</creatorcontrib><creatorcontrib>Tavrow, Doran</creatorcontrib><creatorcontrib>Maguluri, Gopi</creatorcontrib><creatorcontrib>Grimble, John</creatorcontrib><creatorcontrib>Primrose, Michael</creatorcontrib><creatorcontrib>Iftimia, Nicusor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinberg, Rebecca</au><au>Meehan, Jack</au><au>Tavrow, Doran</au><au>Maguluri, Gopi</au><au>Grimble, John</au><au>Primrose, Michael</au><au>Iftimia, Nicusor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><spage>1243</spage><pages>1243-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38928659</pmid><doi>10.3390/diagnostics14121243</doi><orcidid>https://orcid.org/0000-0002-7713-6972</orcidid><orcidid>https://orcid.org/0009-0006-0492-7913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4418
ispartof Diagnostics (Basel), 2024-06, Vol.14 (12), p.1243
issn 2075-4418
2075-4418
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1a9c4621244a4e508cc85cfb72c6aa9b
source Publicly Available Content (ProQuest); PubMed Central
subjects Aerospace industry
Biopsy
Catheters
Fiber optics
Fibrosis
idiopathic lung fibrosis
Inflammation
Light
Lung diseases
Lungs
machine learning
Morphology
Pneumothorax
polarization sensitive optical coherence tomography imaging
Pulmonary fibrosis
Tomography
title Assessing Lung Fibrosis with ML-Assisted Minimally Invasive OCT Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Lung%20Fibrosis%20with%20ML-Assisted%20Minimally%20Invasive%20OCT%20Imaging&rft.jtitle=Diagnostics%20(Basel)&rft.au=Steinberg,%20Rebecca&rft.date=2024-06-01&rft.volume=14&rft.issue=12&rft.spage=1243&rft.pages=1243-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics14121243&rft_dat=%3Cgale_doaj_%3EA799445189%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-1419b976a8b261e3c1c59f6de67ebab31abbe0276c2f3e5881826965463f48b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072305359&rft_id=info:pmid/38928659&rft_galeid=A799445189&rfr_iscdi=true