Loading…

Tracking patterns in self-regulated learning using students' self-reports and online trace data

For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report mea...

Full description

Saved in:
Bibliographic Details
Published in:Frontline learning research 2020, Vol.8 (3), p.140-163
Main Authors: Halem, Nicolette Van, Klaveren, Chris Van, Drachsler, Hendrik, Schmitz, Marcel, Cornelisz, Ilja
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503
cites
container_end_page 163
container_issue 3
container_start_page 140
container_title Frontline learning research
container_volume 8
creator Halem, Nicolette Van
Klaveren, Chris Van
Drachsler, Hendrik
Schmitz, Marcel
Cornelisz, Ilja
description For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)
doi_str_mv 10.14786/flr.v8i3.497
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1260778</ericid><doaj_id>oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c</doaj_id><sourcerecordid>2458995786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</originalsourceid><addsrcrecordid>eNpNkc9rFTEQxxdRsLQ9ehGEvelln8lm8-tYStWWgpd3D5Nk9pGaZtckK_jfm9dXq5eZIfPhM4Rv172jZEcnqcTnOebdLxXYbtLyVXc2jpoPjHL9-r_5bXdZygMhZJSKMSXPOrPP4H6EdOhXqBVzKn1IfcE4DxkPW4SKvo8IOR2ZrRxrqZvHVMvHv9y65Fp6SL5fUgwJ-9qk2HuocNG9mSEWvHzu593-y83--ttw__3r7fXV_eAYo3JwVinhvVOTJVxMvs2oZ4tCc-UpcwIsMBDWjtRa7ZVAwZFISUAAcsLOu9uT1i_wYNYcHiH_NgsE8_Sw5IOBXIOLaCgAVwoJlRwnq4VylFvi-UwkCsFcc304uTAH9-K6uaOjaBdV23867de8_NywVPMYisMYIeGyFTNOXGnNWyYNHU6oy0spGecXHSXmKTbTYjPH2EyLrfHvn78R1n_sFeOTntgffVqUjQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458995786</pqid></control><display><type>article</type><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><source>CRKN Open Access Journals List</source><source>ERIC</source><creator>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</creator><creatorcontrib>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</creatorcontrib><description>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</description><identifier>ISSN: 2295-3159</identifier><identifier>EISSN: 2295-3159</identifier><identifier>DOI: 10.14786/flr.v8i3.497</identifier><language>eng</language><publisher>European Association for Research on Learning and Instruction</publisher><subject>College Students ; Comparative Analysis ; Computer Software ; Data Analysis ; Daten ; E-Learning ; Ereignis ; Foreign Countries ; Grades (Scholastic) ; Independent Study ; Instructional Design ; Komplementarität ; Learning Motivation ; Learning Processes ; Learning Strategies ; Lernen ; Lernverhalten ; Management Systems ; Measurement Techniques ; Messung ; Metacognition ; Methode ; Motivation ; Online ; Online Courses ; Questionnaires ; Required Courses ; Selbstbeobachtung ; Selbstgesteuertes Lernen ; Self Efficacy ; Statistics ; Strategie ; Student ; Student Attitudes ; Student Behavior ; Study Habits ; Varianz ; Verhaltensmuster</subject><ispartof>Frontline learning research, 2020, Vol.8 (3), p.140-163</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4021,27921,27922,27923,31218</link.rule.ids><backlink>$$Uhttp://www.fachportal-paedagogik.de/fis_bildung/suche/fis_set.html?FId=A35494$$DAccess content in the German Education Portal$$Hfree_for_read</backlink><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1260778$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Halem, Nicolette Van</creatorcontrib><creatorcontrib>Klaveren, Chris Van</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Schmitz, Marcel</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><title>Frontline learning research</title><description>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</description><subject>College Students</subject><subject>Comparative Analysis</subject><subject>Computer Software</subject><subject>Data Analysis</subject><subject>Daten</subject><subject>E-Learning</subject><subject>Ereignis</subject><subject>Foreign Countries</subject><subject>Grades (Scholastic)</subject><subject>Independent Study</subject><subject>Instructional Design</subject><subject>Komplementarität</subject><subject>Learning Motivation</subject><subject>Learning Processes</subject><subject>Learning Strategies</subject><subject>Lernen</subject><subject>Lernverhalten</subject><subject>Management Systems</subject><subject>Measurement Techniques</subject><subject>Messung</subject><subject>Metacognition</subject><subject>Methode</subject><subject>Motivation</subject><subject>Online</subject><subject>Online Courses</subject><subject>Questionnaires</subject><subject>Required Courses</subject><subject>Selbstbeobachtung</subject><subject>Selbstgesteuertes Lernen</subject><subject>Self Efficacy</subject><subject>Statistics</subject><subject>Strategie</subject><subject>Student</subject><subject>Student Attitudes</subject><subject>Student Behavior</subject><subject>Study Habits</subject><subject>Varianz</subject><subject>Verhaltensmuster</subject><issn>2295-3159</issn><issn>2295-3159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M2S</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9rFTEQxxdRsLQ9ehGEvelln8lm8-tYStWWgpd3D5Nk9pGaZtckK_jfm9dXq5eZIfPhM4Rv172jZEcnqcTnOebdLxXYbtLyVXc2jpoPjHL9-r_5bXdZygMhZJSKMSXPOrPP4H6EdOhXqBVzKn1IfcE4DxkPW4SKvo8IOR2ZrRxrqZvHVMvHv9y65Fp6SL5fUgwJ-9qk2HuocNG9mSEWvHzu593-y83--ttw__3r7fXV_eAYo3JwVinhvVOTJVxMvs2oZ4tCc-UpcwIsMBDWjtRa7ZVAwZFISUAAcsLOu9uT1i_wYNYcHiH_NgsE8_Sw5IOBXIOLaCgAVwoJlRwnq4VylFvi-UwkCsFcc304uTAH9-K6uaOjaBdV23867de8_NywVPMYisMYIeGyFTNOXGnNWyYNHU6oy0spGecXHSXmKTbTYjPH2EyLrfHvn78R1n_sFeOTntgffVqUjQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Halem, Nicolette Van</creator><creator>Klaveren, Chris Van</creator><creator>Drachsler, Hendrik</creator><creator>Schmitz, Marcel</creator><creator>Cornelisz, Ilja</creator><general>European Association for Research on Learning and Instruction</general><general>EARLI</general><scope>9S6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>7SW</scope><scope>ALSLI</scope><scope>CJNVE</scope><scope>M2S</scope><scope>PQEDU</scope><scope>ERI</scope><scope>GA5</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><author>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>College Students</topic><topic>Comparative Analysis</topic><topic>Computer Software</topic><topic>Data Analysis</topic><topic>Daten</topic><topic>E-Learning</topic><topic>Ereignis</topic><topic>Foreign Countries</topic><topic>Grades (Scholastic)</topic><topic>Independent Study</topic><topic>Instructional Design</topic><topic>Komplementarität</topic><topic>Learning Motivation</topic><topic>Learning Processes</topic><topic>Learning Strategies</topic><topic>Lernen</topic><topic>Lernverhalten</topic><topic>Management Systems</topic><topic>Measurement Techniques</topic><topic>Messung</topic><topic>Metacognition</topic><topic>Methode</topic><topic>Motivation</topic><topic>Online</topic><topic>Online Courses</topic><topic>Questionnaires</topic><topic>Required Courses</topic><topic>Selbstbeobachtung</topic><topic>Selbstgesteuertes Lernen</topic><topic>Self Efficacy</topic><topic>Statistics</topic><topic>Strategie</topic><topic>Student</topic><topic>Student Attitudes</topic><topic>Student Behavior</topic><topic>Study Habits</topic><topic>Varianz</topic><topic>Verhaltensmuster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halem, Nicolette Van</creatorcontrib><creatorcontrib>Klaveren, Chris Van</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Schmitz, Marcel</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><collection>FIS Bildung Literaturdatenbank</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ERIC</collection><collection>Social Science Premium Collection</collection><collection>Education Collection</collection><collection>Sociology Database</collection><collection>ProQuest One Education</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontline learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halem, Nicolette Van</au><au>Klaveren, Chris Van</au><au>Drachsler, Hendrik</au><au>Schmitz, Marcel</au><au>Cornelisz, Ilja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1260778</ericid><atitle>Tracking patterns in self-regulated learning using students' self-reports and online trace data</atitle><jtitle>Frontline learning research</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>140</spage><epage>163</epage><pages>140-163</pages><issn>2295-3159</issn><eissn>2295-3159</eissn><abstract>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</abstract><pub>European Association for Research on Learning and Instruction</pub><doi>10.14786/flr.v8i3.497</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2295-3159
ispartof Frontline learning research, 2020, Vol.8 (3), p.140-163
issn 2295-3159
2295-3159
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c
source CRKN Open Access Journals List; ERIC
subjects College Students
Comparative Analysis
Computer Software
Data Analysis
Daten
E-Learning
Ereignis
Foreign Countries
Grades (Scholastic)
Independent Study
Instructional Design
Komplementarität
Learning Motivation
Learning Processes
Learning Strategies
Lernen
Lernverhalten
Management Systems
Measurement Techniques
Messung
Metacognition
Methode
Motivation
Online
Online Courses
Questionnaires
Required Courses
Selbstbeobachtung
Selbstgesteuertes Lernen
Self Efficacy
Statistics
Strategie
Student
Student Attitudes
Student Behavior
Study Habits
Varianz
Verhaltensmuster
title Tracking patterns in self-regulated learning using students' self-reports and online trace data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20patterns%20in%20self-regulated%20learning%20using%20students'%20self-reports%20and%20online%20trace%20data&rft.jtitle=Frontline%20learning%20research&rft.au=Halem,%20Nicolette%20Van&rft.date=2020&rft.volume=8&rft.issue=3&rft.spage=140&rft.epage=163&rft.pages=140-163&rft.issn=2295-3159&rft.eissn=2295-3159&rft_id=info:doi/10.14786/flr.v8i3.497&rft_dat=%3Cproquest_doaj_%3E2458995786%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458995786&rft_id=info:pmid/&rft_ericid=EJ1260778&rfr_iscdi=true