Loading…
Tracking patterns in self-regulated learning using students' self-reports and online trace data
For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report mea...
Saved in:
Published in: | Frontline learning research 2020, Vol.8 (3), p.140-163 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503 |
---|---|
cites | |
container_end_page | 163 |
container_issue | 3 |
container_start_page | 140 |
container_title | Frontline learning research |
container_volume | 8 |
creator | Halem, Nicolette Van Klaveren, Chris Van Drachsler, Hendrik Schmitz, Marcel Cornelisz, Ilja |
description | For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.) |
doi_str_mv | 10.14786/flr.v8i3.497 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1260778</ericid><doaj_id>oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c</doaj_id><sourcerecordid>2458995786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</originalsourceid><addsrcrecordid>eNpNkc9rFTEQxxdRsLQ9ehGEvelln8lm8-tYStWWgpd3D5Nk9pGaZtckK_jfm9dXq5eZIfPhM4Rv172jZEcnqcTnOebdLxXYbtLyVXc2jpoPjHL9-r_5bXdZygMhZJSKMSXPOrPP4H6EdOhXqBVzKn1IfcE4DxkPW4SKvo8IOR2ZrRxrqZvHVMvHv9y65Fp6SL5fUgwJ-9qk2HuocNG9mSEWvHzu593-y83--ttw__3r7fXV_eAYo3JwVinhvVOTJVxMvs2oZ4tCc-UpcwIsMBDWjtRa7ZVAwZFISUAAcsLOu9uT1i_wYNYcHiH_NgsE8_Sw5IOBXIOLaCgAVwoJlRwnq4VylFvi-UwkCsFcc304uTAH9-K6uaOjaBdV23867de8_NywVPMYisMYIeGyFTNOXGnNWyYNHU6oy0spGecXHSXmKTbTYjPH2EyLrfHvn78R1n_sFeOTntgffVqUjQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458995786</pqid></control><display><type>article</type><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><source>CRKN Open Access Journals List</source><source>ERIC</source><creator>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</creator><creatorcontrib>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</creatorcontrib><description>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</description><identifier>ISSN: 2295-3159</identifier><identifier>EISSN: 2295-3159</identifier><identifier>DOI: 10.14786/flr.v8i3.497</identifier><language>eng</language><publisher>European Association for Research on Learning and Instruction</publisher><subject>College Students ; Comparative Analysis ; Computer Software ; Data Analysis ; Daten ; E-Learning ; Ereignis ; Foreign Countries ; Grades (Scholastic) ; Independent Study ; Instructional Design ; Komplementarität ; Learning Motivation ; Learning Processes ; Learning Strategies ; Lernen ; Lernverhalten ; Management Systems ; Measurement Techniques ; Messung ; Metacognition ; Methode ; Motivation ; Online ; Online Courses ; Questionnaires ; Required Courses ; Selbstbeobachtung ; Selbstgesteuertes Lernen ; Self Efficacy ; Statistics ; Strategie ; Student ; Student Attitudes ; Student Behavior ; Study Habits ; Varianz ; Verhaltensmuster</subject><ispartof>Frontline learning research, 2020, Vol.8 (3), p.140-163</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4021,27921,27922,27923,31218</link.rule.ids><backlink>$$Uhttp://www.fachportal-paedagogik.de/fis_bildung/suche/fis_set.html?FId=A35494$$DAccess content in the German Education Portal$$Hfree_for_read</backlink><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1260778$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Halem, Nicolette Van</creatorcontrib><creatorcontrib>Klaveren, Chris Van</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Schmitz, Marcel</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><title>Frontline learning research</title><description>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</description><subject>College Students</subject><subject>Comparative Analysis</subject><subject>Computer Software</subject><subject>Data Analysis</subject><subject>Daten</subject><subject>E-Learning</subject><subject>Ereignis</subject><subject>Foreign Countries</subject><subject>Grades (Scholastic)</subject><subject>Independent Study</subject><subject>Instructional Design</subject><subject>Komplementarität</subject><subject>Learning Motivation</subject><subject>Learning Processes</subject><subject>Learning Strategies</subject><subject>Lernen</subject><subject>Lernverhalten</subject><subject>Management Systems</subject><subject>Measurement Techniques</subject><subject>Messung</subject><subject>Metacognition</subject><subject>Methode</subject><subject>Motivation</subject><subject>Online</subject><subject>Online Courses</subject><subject>Questionnaires</subject><subject>Required Courses</subject><subject>Selbstbeobachtung</subject><subject>Selbstgesteuertes Lernen</subject><subject>Self Efficacy</subject><subject>Statistics</subject><subject>Strategie</subject><subject>Student</subject><subject>Student Attitudes</subject><subject>Student Behavior</subject><subject>Study Habits</subject><subject>Varianz</subject><subject>Verhaltensmuster</subject><issn>2295-3159</issn><issn>2295-3159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M2S</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9rFTEQxxdRsLQ9ehGEvelln8lm8-tYStWWgpd3D5Nk9pGaZtckK_jfm9dXq5eZIfPhM4Rv172jZEcnqcTnOebdLxXYbtLyVXc2jpoPjHL9-r_5bXdZygMhZJSKMSXPOrPP4H6EdOhXqBVzKn1IfcE4DxkPW4SKvo8IOR2ZrRxrqZvHVMvHv9y65Fp6SL5fUgwJ-9qk2HuocNG9mSEWvHzu593-y83--ttw__3r7fXV_eAYo3JwVinhvVOTJVxMvs2oZ4tCc-UpcwIsMBDWjtRa7ZVAwZFISUAAcsLOu9uT1i_wYNYcHiH_NgsE8_Sw5IOBXIOLaCgAVwoJlRwnq4VylFvi-UwkCsFcc304uTAH9-K6uaOjaBdV23867de8_NywVPMYisMYIeGyFTNOXGnNWyYNHU6oy0spGecXHSXmKTbTYjPH2EyLrfHvn78R1n_sFeOTntgffVqUjQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Halem, Nicolette Van</creator><creator>Klaveren, Chris Van</creator><creator>Drachsler, Hendrik</creator><creator>Schmitz, Marcel</creator><creator>Cornelisz, Ilja</creator><general>European Association for Research on Learning and Instruction</general><general>EARLI</general><scope>9S6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>7SW</scope><scope>ALSLI</scope><scope>CJNVE</scope><scope>M2S</scope><scope>PQEDU</scope><scope>ERI</scope><scope>GA5</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Tracking patterns in self-regulated learning using students' self-reports and online trace data</title><author>Halem, Nicolette Van ; Klaveren, Chris Van ; Drachsler, Hendrik ; Schmitz, Marcel ; Cornelisz, Ilja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>College Students</topic><topic>Comparative Analysis</topic><topic>Computer Software</topic><topic>Data Analysis</topic><topic>Daten</topic><topic>E-Learning</topic><topic>Ereignis</topic><topic>Foreign Countries</topic><topic>Grades (Scholastic)</topic><topic>Independent Study</topic><topic>Instructional Design</topic><topic>Komplementarität</topic><topic>Learning Motivation</topic><topic>Learning Processes</topic><topic>Learning Strategies</topic><topic>Lernen</topic><topic>Lernverhalten</topic><topic>Management Systems</topic><topic>Measurement Techniques</topic><topic>Messung</topic><topic>Metacognition</topic><topic>Methode</topic><topic>Motivation</topic><topic>Online</topic><topic>Online Courses</topic><topic>Questionnaires</topic><topic>Required Courses</topic><topic>Selbstbeobachtung</topic><topic>Selbstgesteuertes Lernen</topic><topic>Self Efficacy</topic><topic>Statistics</topic><topic>Strategie</topic><topic>Student</topic><topic>Student Attitudes</topic><topic>Student Behavior</topic><topic>Study Habits</topic><topic>Varianz</topic><topic>Verhaltensmuster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halem, Nicolette Van</creatorcontrib><creatorcontrib>Klaveren, Chris Van</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Schmitz, Marcel</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><collection>FIS Bildung Literaturdatenbank</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ERIC</collection><collection>Social Science Premium Collection</collection><collection>Education Collection</collection><collection>Sociology Database</collection><collection>ProQuest One Education</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontline learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halem, Nicolette Van</au><au>Klaveren, Chris Van</au><au>Drachsler, Hendrik</au><au>Schmitz, Marcel</au><au>Cornelisz, Ilja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1260778</ericid><atitle>Tracking patterns in self-regulated learning using students' self-reports and online trace data</atitle><jtitle>Frontline learning research</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>140</spage><epage>163</epage><pages>140-163</pages><issn>2295-3159</issn><eissn>2295-3159</eissn><abstract>For decades, self-report instruments - which rely heavily on students' perceptions and beliefs - have been the dominant way of measuring motivation and strategy use. An event-based measure based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance and reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is 'frontline' in the sense that event-based measurement methodologies using online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added value of innovative and traditional methods of measuring motivation and strategy use. (DIPF/Orig.)</abstract><pub>European Association for Research on Learning and Instruction</pub><doi>10.14786/flr.v8i3.497</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2295-3159 |
ispartof | Frontline learning research, 2020, Vol.8 (3), p.140-163 |
issn | 2295-3159 2295-3159 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1aa588e0175e4b968c15b0d5f07e663c |
source | CRKN Open Access Journals List; ERIC |
subjects | College Students Comparative Analysis Computer Software Data Analysis Daten E-Learning Ereignis Foreign Countries Grades (Scholastic) Independent Study Instructional Design Komplementarität Learning Motivation Learning Processes Learning Strategies Lernen Lernverhalten Management Systems Measurement Techniques Messung Metacognition Methode Motivation Online Online Courses Questionnaires Required Courses Selbstbeobachtung Selbstgesteuertes Lernen Self Efficacy Statistics Strategie Student Student Attitudes Student Behavior Study Habits Varianz Verhaltensmuster |
title | Tracking patterns in self-regulated learning using students' self-reports and online trace data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20patterns%20in%20self-regulated%20learning%20using%20students'%20self-reports%20and%20online%20trace%20data&rft.jtitle=Frontline%20learning%20research&rft.au=Halem,%20Nicolette%20Van&rft.date=2020&rft.volume=8&rft.issue=3&rft.spage=140&rft.epage=163&rft.pages=140-163&rft.issn=2295-3159&rft.eissn=2295-3159&rft_id=info:doi/10.14786/flr.v8i3.497&rft_dat=%3Cproquest_doaj_%3E2458995786%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3317-cb886ddc84b0564d6dde9fbe6958d13c6aba3a6bb21bb9d86e65e0770a6ae503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458995786&rft_id=info:pmid/&rft_ericid=EJ1260778&rfr_iscdi=true |