Loading…

Upcycling of protein concentrates from industrial byproducts into polyurethane wood adhesives

Wood structures generally rely on synthetic adhesives for their strength and versatility. However, environmental concerns linked to the chemical composition of these adhesives have stimulated the search for more environmentally friendly adhesives. Researchers have explored replacing petroleum-based...

Full description

Saved in:
Bibliographic Details
Published in:Bioresources 2024-02, Vol.19 (1), p.1165-1189
Main Authors: Mary, Alex, Blanchet, Pierre, Pepin, Simon, Chamberland, Julien, Landry, Véronic
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wood structures generally rely on synthetic adhesives for their strength and versatility. However, environmental concerns linked to the chemical composition of these adhesives have stimulated the search for more environmentally friendly adhesives. Researchers have explored replacing petroleum-based constituents with natural raw materials such as lignins, tannins, and proteins. Of these alternatives, proteins, being biological macromolecules, are recognized for their capacity to enhance adhesion to wood substrates. This study considered the development of protein-based adhesives derived from diverse sources, including soybean meal, microbrewery spent grains, shrimp shells, and skim milk powder. These raw materials were subjected to mild alkaline conditions to yield protein concentrates. The resulting adhesives were formulated at various protein content levels: 5%, 10%, 15%, and 20%. The study’s findings showed that the incorporation of proteins into the polyurethane adhesive system not only can preserve but also augment adhesive performance. This enhancement encompasses deeper penetration into wood substrates and an overall improvement in mechanical strength. These results underscore the promise of proteins as a sustainable alternative to petroleum-based polyols in adhesive formulations.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.19.1.1165-1189