Loading…
Log-rank and stratified log-rank tests
In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stra...
Saved in:
Published in: | Statistical theory and related fields 2023-10, Vol.7 (4), p.309-317 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623 |
container_end_page | 317 |
container_issue | 4 |
container_start_page | 309 |
container_title | Statistical theory and related fields |
container_volume | 7 |
creator | Ye, Ting Shao, Jun Yi, Yanyao |
description | In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general. |
doi_str_mv | 10.1080/24754269.2023.2263720 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</doaj_id><sourcerecordid>oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EElXpT0DqxJZyff0eUcWjUiQWmK3r2KlSQoPsLPx7GvoYrr6rM5zhMHbPYcXBwiNKoyRqt0JAsULUwiBcsdnEK4nGXF9-7W7ZopQdAHCrQAs-Yw_1sK0y7b-WtI_LMmYau7ZLcdmf-ZjKWO7YTUt9SYvTztnny_PH-q2q318366e6agSXY0UEKLF1KXKbNI_RRq7gcMpohShko50GxZUNEp0Mgjtr0AiNEFqnUczZ5uiNA-38T-6-Kf_6gTr_D4a89ZTHrumT5xRCQ4F00CgdIAlETNCIyDFKZQ8udXQ1eSglp_bi4-Cndv7czk_t_Kmd-AMkGl3B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Log-rank and stratified log-rank tests</title><source>Taylor & Francis Open Access</source><source>Alma/SFX Local Collection</source><creator>Ye, Ting ; Shao, Jun ; Yi, Yanyao</creator><creatorcontrib>Ye, Ting ; Shao, Jun ; Yi, Yanyao</creatorcontrib><description>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</description><identifier>ISSN: 2475-4269</identifier><identifier>EISSN: 2475-4277</identifier><identifier>DOI: 10.1080/24754269.2023.2263720</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>baseline covariates ; covariate-adaptive randomization ; null hypothesis of no treatment effect ; pitman's relative efficiency ; time-to-event ; validity of tests</subject><ispartof>Statistical theory and related fields, 2023-10, Vol.7 (4), p.309-317</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ye, Ting</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yi, Yanyao</creatorcontrib><title>Log-rank and stratified log-rank tests</title><title>Statistical theory and related fields</title><description>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</description><subject>baseline covariates</subject><subject>covariate-adaptive randomization</subject><subject>null hypothesis of no treatment effect</subject><subject>pitman's relative efficiency</subject><subject>time-to-event</subject><subject>validity of tests</subject><issn>2475-4269</issn><issn>2475-4277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kDtPwzAURi0EElXpT0DqxJZyff0eUcWjUiQWmK3r2KlSQoPsLPx7GvoYrr6rM5zhMHbPYcXBwiNKoyRqt0JAsULUwiBcsdnEK4nGXF9-7W7ZopQdAHCrQAs-Yw_1sK0y7b-WtI_LMmYau7ZLcdmf-ZjKWO7YTUt9SYvTztnny_PH-q2q318366e6agSXY0UEKLF1KXKbNI_RRq7gcMpohShko50GxZUNEp0Mgjtr0AiNEFqnUczZ5uiNA-38T-6-Kf_6gTr_D4a89ZTHrumT5xRCQ4F00CgdIAlETNCIyDFKZQ8udXQ1eSglp_bi4-Cndv7czk_t_Kmd-AMkGl3B</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Ye, Ting</creator><creator>Shao, Jun</creator><creator>Yi, Yanyao</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20231002</creationdate><title>Log-rank and stratified log-rank tests</title><author>Ye, Ting ; Shao, Jun ; Yi, Yanyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>baseline covariates</topic><topic>covariate-adaptive randomization</topic><topic>null hypothesis of no treatment effect</topic><topic>pitman's relative efficiency</topic><topic>time-to-event</topic><topic>validity of tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ting</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yi, Yanyao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Statistical theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ting</au><au>Shao, Jun</au><au>Yi, Yanyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Log-rank and stratified log-rank tests</atitle><jtitle>Statistical theory and related fields</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>7</volume><issue>4</issue><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>2475-4269</issn><eissn>2475-4277</eissn><abstract>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/24754269.2023.2263720</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-4269 |
ispartof | Statistical theory and related fields, 2023-10, Vol.7 (4), p.309-317 |
issn | 2475-4269 2475-4277 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458 |
source | Taylor & Francis Open Access; Alma/SFX Local Collection |
subjects | baseline covariates covariate-adaptive randomization null hypothesis of no treatment effect pitman's relative efficiency time-to-event validity of tests |
title | Log-rank and stratified log-rank tests |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Log-rank%20and%20stratified%20log-rank%20tests&rft.jtitle=Statistical%20theory%20and%20related%20fields&rft.au=Ye,%20Ting&rft.date=2023-10-02&rft.volume=7&rft.issue=4&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=2475-4269&rft.eissn=2475-4277&rft_id=info:doi/10.1080/24754269.2023.2263720&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |