Loading…

Log-rank and stratified log-rank tests

In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stra...

Full description

Saved in:
Bibliographic Details
Published in:Statistical theory and related fields 2023-10, Vol.7 (4), p.309-317
Main Authors: Ye, Ting, Shao, Jun, Yi, Yanyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623
container_end_page 317
container_issue 4
container_start_page 309
container_title Statistical theory and related fields
container_volume 7
creator Ye, Ting
Shao, Jun
Yi, Yanyao
description In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.
doi_str_mv 10.1080/24754269.2023.2263720
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</doaj_id><sourcerecordid>oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EElXpT0DqxJZyff0eUcWjUiQWmK3r2KlSQoPsLPx7GvoYrr6rM5zhMHbPYcXBwiNKoyRqt0JAsULUwiBcsdnEK4nGXF9-7W7ZopQdAHCrQAs-Yw_1sK0y7b-WtI_LMmYau7ZLcdmf-ZjKWO7YTUt9SYvTztnny_PH-q2q318366e6agSXY0UEKLF1KXKbNI_RRq7gcMpohShko50GxZUNEp0Mgjtr0AiNEFqnUczZ5uiNA-38T-6-Kf_6gTr_D4a89ZTHrumT5xRCQ4F00CgdIAlETNCIyDFKZQ8udXQ1eSglp_bi4-Cndv7czk_t_Kmd-AMkGl3B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Log-rank and stratified log-rank tests</title><source>Taylor &amp; Francis Open Access</source><source>Alma/SFX Local Collection</source><creator>Ye, Ting ; Shao, Jun ; Yi, Yanyao</creator><creatorcontrib>Ye, Ting ; Shao, Jun ; Yi, Yanyao</creatorcontrib><description>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</description><identifier>ISSN: 2475-4269</identifier><identifier>EISSN: 2475-4277</identifier><identifier>DOI: 10.1080/24754269.2023.2263720</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>baseline covariates ; covariate-adaptive randomization ; null hypothesis of no treatment effect ; pitman's relative efficiency ; time-to-event ; validity of tests</subject><ispartof>Statistical theory and related fields, 2023-10, Vol.7 (4), p.309-317</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ye, Ting</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yi, Yanyao</creatorcontrib><title>Log-rank and stratified log-rank tests</title><title>Statistical theory and related fields</title><description>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</description><subject>baseline covariates</subject><subject>covariate-adaptive randomization</subject><subject>null hypothesis of no treatment effect</subject><subject>pitman's relative efficiency</subject><subject>time-to-event</subject><subject>validity of tests</subject><issn>2475-4269</issn><issn>2475-4277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kDtPwzAURi0EElXpT0DqxJZyff0eUcWjUiQWmK3r2KlSQoPsLPx7GvoYrr6rM5zhMHbPYcXBwiNKoyRqt0JAsULUwiBcsdnEK4nGXF9-7W7ZopQdAHCrQAs-Yw_1sK0y7b-WtI_LMmYau7ZLcdmf-ZjKWO7YTUt9SYvTztnny_PH-q2q318366e6agSXY0UEKLF1KXKbNI_RRq7gcMpohShko50GxZUNEp0Mgjtr0AiNEFqnUczZ5uiNA-38T-6-Kf_6gTr_D4a89ZTHrumT5xRCQ4F00CgdIAlETNCIyDFKZQ8udXQ1eSglp_bi4-Cndv7czk_t_Kmd-AMkGl3B</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Ye, Ting</creator><creator>Shao, Jun</creator><creator>Yi, Yanyao</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20231002</creationdate><title>Log-rank and stratified log-rank tests</title><author>Ye, Ting ; Shao, Jun ; Yi, Yanyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>baseline covariates</topic><topic>covariate-adaptive randomization</topic><topic>null hypothesis of no treatment effect</topic><topic>pitman's relative efficiency</topic><topic>time-to-event</topic><topic>validity of tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ting</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Yi, Yanyao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Statistical theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ting</au><au>Shao, Jun</au><au>Yi, Yanyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Log-rank and stratified log-rank tests</atitle><jtitle>Statistical theory and related fields</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>7</volume><issue>4</issue><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>2475-4269</issn><eissn>2475-4277</eissn><abstract>In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/24754269.2023.2263720</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-4269
ispartof Statistical theory and related fields, 2023-10, Vol.7 (4), p.309-317
issn 2475-4269
2475-4277
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458
source Taylor & Francis Open Access; Alma/SFX Local Collection
subjects baseline covariates
covariate-adaptive randomization
null hypothesis of no treatment effect
pitman's relative efficiency
time-to-event
validity of tests
title Log-rank and stratified log-rank tests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Log-rank%20and%20stratified%20log-rank%20tests&rft.jtitle=Statistical%20theory%20and%20related%20fields&rft.au=Ye,%20Ting&rft.date=2023-10-02&rft.volume=7&rft.issue=4&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=2475-4269&rft.eissn=2475-4277&rft_id=info:doi/10.1080/24754269.2023.2263720&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1abbcaba6b624902a3222e0c3d12d458%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-aa0242f9ed18e61dd8d150d1557652234c69605158b4294b31987273620bf9623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true