Loading…

Microstructural and Corrosion Properties of Ti-to-Zr Dissimilar Alloy Joints Brazed with a Zr-Ti-Cu-Ni Amorphous Filler Alloy

Titanium and Zircaloy-4 dissimilar alloys were brazed with a zirconium-titanium-copper-nickel amorphous filler alloy, and the resulting joint structures as well as their corrosion properties were examined. The microstructure of the brazed joints was investigated according to brazing holding time at...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-02, Vol.11 (2), p.192
Main Authors: Lee, Si-Young, Lee, Hyun-Jun, Baek, Jong-Hee, Park, Sung Soo, Lee, Jung Gu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium and Zircaloy-4 dissimilar alloys were brazed with a zirconium-titanium-copper-nickel amorphous filler alloy, and the resulting joint structures as well as their corrosion properties were examined. The microstructure of the brazed joints was investigated according to brazing holding time at 850 °C, and the corrosion property was analyzed by potentiodynamic polarization. During brazing, joints were produced by diffusion-induced isothermal solidification of the molten filler alloy. At a relatively brief brazing holding time of 5 min, a large segregation zone consisting of an active α-phase and a nobler intermetallic phase was generated in the joint center, which suffered from micro-galvanic corrosion. The presence of alloyed titanium deteriorated the nobility of the α-zirconium phase near the joint and induced galvanic coupling with cathodic base metals, resulting in massive localized corrosion. This localized corrosion caused the pitting behavior at the applied potential of −51.1~187.5 mV during anodic polarization. With a brazing holding time of 20 min, the concentration of the alloying elements was homogenized to eliminate the electrochemical potential difference and minimize the galvanic corrosion susceptibility of the joint region. This homogeneous joint resulted in a highly passive corrosion behavior comparable to that of the titanium base metal.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11020192