Loading…

A Note on Limits and Trends in PV Cells and Modules

The key components of photovoltaic (PV) systems are PV modules representing basic devices, which are able to operate in outdoor conditions for a long time. PV modules can be manufactured from different materials using different production technologies. The main criterion supporting or limiting the s...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-04, Vol.12 (7), p.3363
Main Authors: Benda, Vitezslav, Cerna, Ladislava
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The key components of photovoltaic (PV) systems are PV modules representing basic devices, which are able to operate in outdoor conditions for a long time. PV modules can be manufactured from different materials using different production technologies. The main criterion supporting or limiting the successful placement of specific technologies on the market is the price of electricity produced by PV systems. The levelized cost of energy (LCOE) method considers investment costs, operating costs, and the total energy produced during a PV system’s service life. The influence of price, efficiency, and service life of PV modules on the LCOE (together with the availability of materials) sets limits for applicable technologies. Increasing the efficiency of the modules from 21% to 23% could lead to a reduction of the area-dependent part of the PV system costs by 8.7%. Extending the service life from 25 to 30 years could reduce the LCOE by about 10%. As shown in the work, wafer-based crystalline silicon technologies best meet these criteria due to their high efficiency, low costs, long service life, and the availability of materials at present. Technological innovations make it possible to increase the efficiency of the modules closer to the physical limits and to extend the service life of the modules.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12073363