Loading…

Improved iterative calibration for triaxial accelerometers based on the optimal observation

This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A n...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2012-06, Vol.12 (6), p.8157-8175
Main Authors: Yang, Jie, Wu, Wenqi, Wu, Yuanxin, Lian, Junxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3
cites cdi_FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3
container_end_page 8175
container_issue 6
container_start_page 8157
container_title Sensors (Basel, Switzerland)
container_volume 12
creator Yang, Jie
Wu, Wenqi
Wu, Yuanxin
Lian, Junxiang
description This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.
doi_str_mv 10.3390/s120608157
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1b0243873d704a0bbe66d12f2da71c14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b0243873d704a0bbe66d12f2da71c14</doaj_id><sourcerecordid>3340613881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3</originalsourceid><addsrcrecordid>eNqFkk1rHDEMhk1IadK0l_yAMpBLKWxjWx575hIooR8LgV6aUw_G9siJl5nx1vYu7b-vN5umSS_BBwvp0ctrWYScMvoBoKfnmXEqacdadUCOmeBi0XFODx_FR-RVzitKOQB0L8kR573soYdj8mM5rVPc4tCEgsmUsMXGmTHYXRznxsfUlBTMr2DGxjiHI6Y4YWVzY02ufRUqt9jEdQlTZaLNmLZ3za_JC2_GjG_u7xNy_fnT98uvi6tvX5aXH68WrqVtWVihpLDcmZ6hFF72KHk1CB6F9NIJJzshOAo1OMuwx7bWjGTet1IqiQ5OyHKvO0Sz0utUfaTfOpqg7xIx3WiTSnAjamYpF9ApGBQVhlqLUg6Mez4YxRwTVetir7Xe2AkHh3NJZnwi-rQyh1t9E7caBEjKeRV4dy-Q4s8N5qKnkOvYRjNj3GTNgNfTd133PErrFwnRtlDRs__QVdykuU5VsxaUVAzozvz7PeVSzDmhf_DNqN6tiv63KhV--_ilD-jf3YA_x3y5Ig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537671304</pqid></control><display><type>article</type><title>Improved iterative calibration for triaxial accelerometers based on the optimal observation</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Yang, Jie ; Wu, Wenqi ; Wu, Yuanxin ; Lian, Junxiang</creator><creatorcontrib>Yang, Jie ; Wu, Wenqi ; Wu, Yuanxin ; Lian, Junxiang</creatorcontrib><description>This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s120608157</identifier><identifier>PMID: 22969393</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accelerometers ; Accuracy ; Calibration ; Inclination ; iterative calibration ; Kalman filters ; Mathematical analysis ; Mathematical models ; maximum likelihood estimation ; Methods ; Microelectromechanical systems ; nonlinear ; Nonlinearity ; Optimization ; Raw ; Sensors ; triaxial accelerometers ; Vectors (mathematics)</subject><ispartof>Sensors (Basel, Switzerland), 2012-06, Vol.12 (6), p.8157-8175</ispartof><rights>Copyright MDPI AG 2012</rights><rights>2012 by the authors; licensee MDPI, Basel, Switzerland 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3</citedby><cites>FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537671304/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537671304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22969393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Wu, Wenqi</creatorcontrib><creatorcontrib>Wu, Yuanxin</creatorcontrib><creatorcontrib>Lian, Junxiang</creatorcontrib><title>Improved iterative calibration for triaxial accelerometers based on the optimal observation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Calibration</subject><subject>Inclination</subject><subject>iterative calibration</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>maximum likelihood estimation</subject><subject>Methods</subject><subject>Microelectromechanical systems</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Raw</subject><subject>Sensors</subject><subject>triaxial accelerometers</subject><subject>Vectors (mathematics)</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1rHDEMhk1IadK0l_yAMpBLKWxjWx575hIooR8LgV6aUw_G9siJl5nx1vYu7b-vN5umSS_BBwvp0ctrWYScMvoBoKfnmXEqacdadUCOmeBi0XFODx_FR-RVzitKOQB0L8kR573soYdj8mM5rVPc4tCEgsmUsMXGmTHYXRznxsfUlBTMr2DGxjiHI6Y4YWVzY02ufRUqt9jEdQlTZaLNmLZ3za_JC2_GjG_u7xNy_fnT98uvi6tvX5aXH68WrqVtWVihpLDcmZ6hFF72KHk1CB6F9NIJJzshOAo1OMuwx7bWjGTet1IqiQ5OyHKvO0Sz0utUfaTfOpqg7xIx3WiTSnAjamYpF9ApGBQVhlqLUg6Mez4YxRwTVetir7Xe2AkHh3NJZnwi-rQyh1t9E7caBEjKeRV4dy-Q4s8N5qKnkOvYRjNj3GTNgNfTd133PErrFwnRtlDRs__QVdykuU5VsxaUVAzozvz7PeVSzDmhf_DNqN6tiv63KhV--_ilD-jf3YA_x3y5Ig</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Yang, Jie</creator><creator>Wu, Wenqi</creator><creator>Wu, Yuanxin</creator><creator>Lian, Junxiang</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Improved iterative calibration for triaxial accelerometers based on the optimal observation</title><author>Yang, Jie ; Wu, Wenqi ; Wu, Yuanxin ; Lian, Junxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Calibration</topic><topic>Inclination</topic><topic>iterative calibration</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>maximum likelihood estimation</topic><topic>Methods</topic><topic>Microelectromechanical systems</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Raw</topic><topic>Sensors</topic><topic>triaxial accelerometers</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Wu, Wenqi</creatorcontrib><creatorcontrib>Wu, Yuanxin</creatorcontrib><creatorcontrib>Lian, Junxiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Wu, Wenqi</au><au>Wu, Yuanxin</au><au>Lian, Junxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved iterative calibration for triaxial accelerometers based on the optimal observation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>12</volume><issue>6</issue><spage>8157</spage><epage>8175</epage><pages>8157-8175</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22969393</pmid><doi>10.3390/s120608157</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2012-06, Vol.12 (6), p.8157-8175
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1b0243873d704a0bbe66d12f2da71c14
source Publicly Available Content (ProQuest); PubMed Central
subjects Accelerometers
Accuracy
Calibration
Inclination
iterative calibration
Kalman filters
Mathematical analysis
Mathematical models
maximum likelihood estimation
Methods
Microelectromechanical systems
nonlinear
Nonlinearity
Optimization
Raw
Sensors
triaxial accelerometers
Vectors (mathematics)
title Improved iterative calibration for triaxial accelerometers based on the optimal observation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20iterative%20calibration%20for%20triaxial%20accelerometers%20based%20on%20the%20optimal%20observation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yang,%20Jie&rft.date=2012-06-01&rft.volume=12&rft.issue=6&rft.spage=8157&rft.epage=8175&rft.pages=8157-8175&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s120608157&rft_dat=%3Cproquest_doaj_%3E3340613881%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-b4764b2ca91e64f69e622293fe46f6c4c68442e47dcb1e9e5293a61ff56676ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537671304&rft_id=info:pmid/22969393&rfr_iscdi=true