Loading…

Opa-interacting protein 5 modulates docetaxel-induced cell death via regulation of mitophagy in gastric cancer

Damage to mitochondria induces mitophagy, a cellular process that is gaining interest for its therapeutic relevance to a variety of human diseases. However, the mechanism underlying mitochondrial depolarization and clearance in mitophagy remains poorly understood. We previously reported that mitocho...

Full description

Saved in:
Bibliographic Details
Published in:Tumor biology 2017-10, Vol.39 (10), p.1010428317733985-1010428317733985
Main Authors: Kim, Tae Woo, Lee, Seon-Jin, Park, Young-Jun, Park, Sang Yoon, Oh, Byung Moo, Park, Yun Sun, Kim, Bo-Yeon, Lee, Young-Ha, Cho, Hee Jun, Yoon, Suk Ran, Choe, Yong-Kyung, Lee, Hee Gu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Damage to mitochondria induces mitophagy, a cellular process that is gaining interest for its therapeutic relevance to a variety of human diseases. However, the mechanism underlying mitochondrial depolarization and clearance in mitophagy remains poorly understood. We previously reported that mitochondria-induced cell death was caused by knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 in gastric cancer. In this study, we show that Neisseria gonorrhoeae opacity-associated-interacting protein 5 loss and gain of function modulates mitophagy induced by treatment with docetaxel, a chemotherapy drug for gastric cancer. The activation of mitophagy by Neisseria gonorrhoeae opacity-associated-interacting protein 5 overexpression promoted cell survival, preventing docetaxel-induced mitochondrial clearance. Conversely, short interfering RNA–mediated knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 accelerated docetaxel-induced apoptosis while increasing mitochondrial depolarization, reactive oxygen species, and endoplasmic reticulum stress and decreasing adenosine triphosphate production. We also found that the mitochondrial outer membrane proteins mitofusin 2 and phosphatase and tensin homolog–induced putative kinase 1 colocalized with Neisseria gonorrhoeae opacity-associated-interacting protein 5 in mitochondria and that mitofusin 2 knockdown altered Neisseria gonorrhoeae opacity-associated-interacting protein 5 expression. These findings indicate that Neisseria gonorrhoeae opacity-associated-interacting protein 5 modulates docetaxel-induced mitophagic cell death and therefore suggest that this protein comprises a potential therapeutic target for gastric cancer treatment.
ISSN:1010-4283
1423-0380
DOI:10.1177/1010428317733985