Loading…

Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes

Efficient and topical delivery of drugs is essential for maximized efficacy and minimized toxicity. In this study, we aimed to design an exosome-based drug delivery platform endowed with the ability of escaping from phagocytosis at non-target organs and controllably releasing drugs at targeted locat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanobiotechnology 2021-12, Vol.19 (1), p.402-13, Article 402
Main Authors: Guo, Yitong, Wan, Zhuo, Zhao, Ping, Wei, Mengying, Liu, Yunnan, Bu, Te, Sun, Wenqi, Li, Zhelong, Yuan, Lijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient and topical delivery of drugs is essential for maximized efficacy and minimized toxicity. In this study, we aimed to design an exosome-based drug delivery platform endowed with the ability of escaping from phagocytosis at non-target organs and controllably releasing drugs at targeted location. The swtichable stealth coat CP05-TK-mPEG was synthesized and anchored onto exosomes through the interaction between peptide CP05 and exosomal surface marker CD63. Chlorin e6 (Ce6) was loaded into exosomes by direct incubation. Controllable removal of PEG could be achieved by breaking thioketal (TK) through reactive oxygen species (ROS), which was produced by Ce6 under ultrasound irradiation. The whole platform was called SmartExo. The stealth effects were analyzed in RAW264.7 cells and C57BL/6 mice via tracing the exosomes. To confirm the efficacy of the engineered smart exosomes, Bone morphogenetic protein 7 (Bmp7) mRNA was encapsulated into exosomes by transfection of overexpressing plasmid, followed by stealth coating, with the exosomes designated as SmartExo@Bmp7. Therapeutic advantages of SmartExo@Bmp7 were proved by targeted delivering Bmp7 mRNA to omental adipose tissue (OAT) of obese C57BL/6 mice for browning induction. SmartExo platform was successfully constructed without changing the basic characteristics of exosomes. The engineered exosomes effectively escaped from the phagocytosis by RAW264.7 and non-target organs. In addition, the SmartExo could be uptaken locally on-demand by ultrasound mediated removal of the stealth coat. Compared with control exosomes, SmartExo@Bmp7 effectively delivered Bmp7 mRNA into OAT upon ultrasound irradiation, and induced OAT browning, as evidenced by the histology of OAT and increased expression of uncoupling protein 1 (Ucp1). The proposed SmartExo-based delivery platform, which minimizes side effects and maximizing drug efficacy, offers a novel safe and efficient approach for targeted drug delivery. As a proof, the SmartExo@Bmp7 induced local white adipose tissue browning, and it would be a promising strategy for anti-obesity therapy.
ISSN:1477-3155
1477-3155
DOI:10.1186/s12951-021-01145-3