Loading…

Goat manure waste and palm oil mill effluent, viable crude oil degradation substrates: A thermodynamic and composting investigation studies

The composting and thermodynamic processes of crude oil (CO) degradation using the compost of goat manure origin (CGMO) and compost of palm oil mill effluent origin (CPOMEO) were studied. Microbial activity was investigated using the carbon dioxide (CO₂) evolution test. The physiochemical properties...

Full description

Saved in:
Bibliographic Details
Published in:Waste Management Bulletin 2024-03, Vol.1 (4), p.125-133
Main Authors: Amechi Ani, Kingsley, Matthew Agu, Chinedu, Chizoo, Esonye, Henry Kadurumba, Chukwuma, Edwin Ahaneku, Isiguzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The composting and thermodynamic processes of crude oil (CO) degradation using the compost of goat manure origin (CGMO) and compost of palm oil mill effluent origin (CPOMEO) were studied. Microbial activity was investigated using the carbon dioxide (CO₂) evolution test. The physiochemical properties of the composts and that of the treated CO-contaminated soil (COCS) were also investigated. In particular, CGMO significantly improve CO degradation with the highest CO₂ evolution rate of 45 mg/g compared to the CPOMEO and the control. The CO degradation rates of 85.7 %, 71.4 %, and 14 % corresponded to the first-order CO degradation rate constants of 0.743 day−1, 0.689 day−1, and 0.136 day−1 for CGMO, CPOMEO, and control, respectively. The Fourier transforms infrared (FTIR) spectral pattern for both composts revealed adsorption bands that were identifiable with polysaccharides, potassium, and nitrogen, whereas the scanning electron microscope and energy dispersive spectrophotometry (SEMEDX) of CPOMEO indicated carbon and oxygen as the sole compositions. The negative ΔG and ΔH values indicated the spontaneity and exothermic nature of the CO composting process, respectively.
ISSN:2949-7507
2949-7507
DOI:10.1016/j.wmb.2023.10.006