Loading…
Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow
Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governi...
Saved in:
Published in: | Mathematical and computational applications 2018-12, Vol.23 (4), p.78 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3 |
container_end_page | |
container_issue | 4 |
container_start_page | 78 |
container_title | Mathematical and computational applications |
container_volume | 23 |
creator | Danook, Suad Hassan Jasim, Qusay Kamel Hussein, Adnan Mohammed |
description | Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease. |
doi_str_mv | 10.3390/mca23040078 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</doaj_id><sourcerecordid>oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGpX_oHsZTSvSWaWUlpbKLqp6-HmZVPSTMnMVPz39iHS1T0cOB_cD6FHSp45r8nLzgDjRBCiqhs0YqxWRaWEur3K92jSdVtCCKOCMEJGaPMOqfVxCBZP23Rwpg8HhxcOerzOkDrvMp6lDSTjdi71eBZj2PfBQMTrQTscUhesw9OQzRAhX8ohWXeKWQ_xNJrH9vsB3XmInZv83TH6nM_W00Wx-nhbTl9XhWFS9oWvS1tyqWkFpOJKemO1EJ47aVzplS7Bc-EtVbyutODASqC8ktpLWhkFlo_R8sK1LWybfQ47yD9NC6E5F23-aiAfH4iuoWcaqJKZSnAj9VFMbQU4bghVoj6yni4sk9uuy87_8yhpTs6bK-f8F62TdSc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</creator><creatorcontrib>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</creatorcontrib><description>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</description><identifier>ISSN: 2297-8747</identifier><identifier>EISSN: 2297-8747</identifier><identifier>DOI: 10.3390/mca23040078</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>CFD ; elliptical tube ; FLUENT ; heat exchanger ; nanofluid</subject><ispartof>Mathematical and computational applications, 2018-12, Vol.23 (4), p.78</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</citedby><cites>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</cites><orcidid>0000-0002-6519-2555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Danook, Suad Hassan</creatorcontrib><creatorcontrib>Jasim, Qusay Kamel</creatorcontrib><creatorcontrib>Hussein, Adnan Mohammed</creatorcontrib><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><title>Mathematical and computational applications</title><description>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</description><subject>CFD</subject><subject>elliptical tube</subject><subject>FLUENT</subject><subject>heat exchanger</subject><subject>nanofluid</subject><issn>2297-8747</issn><issn>2297-8747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEUhYMoWGpX_oHsZTSvSWaWUlpbKLqp6-HmZVPSTMnMVPz39iHS1T0cOB_cD6FHSp45r8nLzgDjRBCiqhs0YqxWRaWEur3K92jSdVtCCKOCMEJGaPMOqfVxCBZP23Rwpg8HhxcOerzOkDrvMp6lDSTjdi71eBZj2PfBQMTrQTscUhesw9OQzRAhX8ohWXeKWQ_xNJrH9vsB3XmInZv83TH6nM_W00Wx-nhbTl9XhWFS9oWvS1tyqWkFpOJKemO1EJ47aVzplS7Bc-EtVbyutODASqC8ktpLWhkFlo_R8sK1LWybfQ47yD9NC6E5F23-aiAfH4iuoWcaqJKZSnAj9VFMbQU4bghVoj6yni4sk9uuy87_8yhpTs6bK-f8F62TdSc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Danook, Suad Hassan</creator><creator>Jasim, Qusay Kamel</creator><creator>Hussein, Adnan Mohammed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6519-2555</orcidid></search><sort><creationdate>20181201</creationdate><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><author>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CFD</topic><topic>elliptical tube</topic><topic>FLUENT</topic><topic>heat exchanger</topic><topic>nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danook, Suad Hassan</creatorcontrib><creatorcontrib>Jasim, Qusay Kamel</creatorcontrib><creatorcontrib>Hussein, Adnan Mohammed</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical and computational applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danook, Suad Hassan</au><au>Jasim, Qusay Kamel</au><au>Hussein, Adnan Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</atitle><jtitle>Mathematical and computational applications</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>23</volume><issue>4</issue><spage>78</spage><pages>78-</pages><issn>2297-8747</issn><eissn>2297-8747</eissn><abstract>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</abstract><pub>MDPI AG</pub><doi>10.3390/mca23040078</doi><orcidid>https://orcid.org/0000-0002-6519-2555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2297-8747 |
ispartof | Mathematical and computational applications, 2018-12, Vol.23 (4), p.78 |
issn | 2297-8747 2297-8747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | CFD elliptical tube FLUENT heat exchanger nanofluid |
title | Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofluid%20Convective%20Heat%20Transfer%20Enhancement%20Elliptical%20Tube%20inside%20Circular%20Tube%20under%20Turbulent%20Flow&rft.jtitle=Mathematical%20and%20computational%20applications&rft.au=Danook,%20Suad%20Hassan&rft.date=2018-12-01&rft.volume=23&rft.issue=4&rft.spage=78&rft.pages=78-&rft.issn=2297-8747&rft.eissn=2297-8747&rft_id=info:doi/10.3390/mca23040078&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |