Loading…

Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow

Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computational applications 2018-12, Vol.23 (4), p.78
Main Authors: Danook, Suad Hassan, Jasim, Qusay Kamel, Hussein, Adnan Mohammed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3
cites cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3
container_end_page
container_issue 4
container_start_page 78
container_title Mathematical and computational applications
container_volume 23
creator Danook, Suad Hassan
Jasim, Qusay Kamel
Hussein, Adnan Mohammed
description Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.
doi_str_mv 10.3390/mca23040078
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</doaj_id><sourcerecordid>oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGpX_oHsZTSvSWaWUlpbKLqp6-HmZVPSTMnMVPz39iHS1T0cOB_cD6FHSp45r8nLzgDjRBCiqhs0YqxWRaWEur3K92jSdVtCCKOCMEJGaPMOqfVxCBZP23Rwpg8HhxcOerzOkDrvMp6lDSTjdi71eBZj2PfBQMTrQTscUhesw9OQzRAhX8ohWXeKWQ_xNJrH9vsB3XmInZv83TH6nM_W00Wx-nhbTl9XhWFS9oWvS1tyqWkFpOJKemO1EJ47aVzplS7Bc-EtVbyutODASqC8ktpLWhkFlo_R8sK1LWybfQ47yD9NC6E5F23-aiAfH4iuoWcaqJKZSnAj9VFMbQU4bghVoj6yni4sk9uuy87_8yhpTs6bK-f8F62TdSc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</creator><creatorcontrib>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</creatorcontrib><description>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</description><identifier>ISSN: 2297-8747</identifier><identifier>EISSN: 2297-8747</identifier><identifier>DOI: 10.3390/mca23040078</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>CFD ; elliptical tube ; FLUENT ; heat exchanger ; nanofluid</subject><ispartof>Mathematical and computational applications, 2018-12, Vol.23 (4), p.78</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</citedby><cites>FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</cites><orcidid>0000-0002-6519-2555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Danook, Suad Hassan</creatorcontrib><creatorcontrib>Jasim, Qusay Kamel</creatorcontrib><creatorcontrib>Hussein, Adnan Mohammed</creatorcontrib><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><title>Mathematical and computational applications</title><description>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</description><subject>CFD</subject><subject>elliptical tube</subject><subject>FLUENT</subject><subject>heat exchanger</subject><subject>nanofluid</subject><issn>2297-8747</issn><issn>2297-8747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEUhYMoWGpX_oHsZTSvSWaWUlpbKLqp6-HmZVPSTMnMVPz39iHS1T0cOB_cD6FHSp45r8nLzgDjRBCiqhs0YqxWRaWEur3K92jSdVtCCKOCMEJGaPMOqfVxCBZP23Rwpg8HhxcOerzOkDrvMp6lDSTjdi71eBZj2PfBQMTrQTscUhesw9OQzRAhX8ohWXeKWQ_xNJrH9vsB3XmInZv83TH6nM_W00Wx-nhbTl9XhWFS9oWvS1tyqWkFpOJKemO1EJ47aVzplS7Bc-EtVbyutODASqC8ktpLWhkFlo_R8sK1LWybfQ47yD9NC6E5F23-aiAfH4iuoWcaqJKZSnAj9VFMbQU4bghVoj6yni4sk9uuy87_8yhpTs6bK-f8F62TdSc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Danook, Suad Hassan</creator><creator>Jasim, Qusay Kamel</creator><creator>Hussein, Adnan Mohammed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6519-2555</orcidid></search><sort><creationdate>20181201</creationdate><title>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</title><author>Danook, Suad Hassan ; Jasim, Qusay Kamel ; Hussein, Adnan Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CFD</topic><topic>elliptical tube</topic><topic>FLUENT</topic><topic>heat exchanger</topic><topic>nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danook, Suad Hassan</creatorcontrib><creatorcontrib>Jasim, Qusay Kamel</creatorcontrib><creatorcontrib>Hussein, Adnan Mohammed</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical and computational applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danook, Suad Hassan</au><au>Jasim, Qusay Kamel</au><au>Hussein, Adnan Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow</atitle><jtitle>Mathematical and computational applications</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>23</volume><issue>4</issue><spage>78</spage><pages>78-</pages><issn>2297-8747</issn><eissn>2297-8747</eissn><abstract>Heat transfer enhancement employing an elliptical tube inside a circular tube to increase the heat transfer rate without increasing in pressure drop is investigated. The flow rate inside the narrow is in the range of Reynolds number 10,000 to 100,000. Commercial software is used to solve the governing equations (continuity, momentum, and energy) by adopting a finite volume method (FVM). The electrical heater is connected around the circular tube to apply uniform heat flux (3000 W/m2) as a boundary condition. The volume concentrations are in the range of 0.25% to 1% with different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm dispersed in water. The results indicate that the elliptical annulus tube can enhance heat transfer and friction factor by approximately 19% and 6% than the circular tube respectively. Results show that the heat transfer enhancement is significantly increasing as the volume concentrations increase and the nanoparticles size diameter decrease.</abstract><pub>MDPI AG</pub><doi>10.3390/mca23040078</doi><orcidid>https://orcid.org/0000-0002-6519-2555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2297-8747
ispartof Mathematical and computational applications, 2018-12, Vol.23 (4), p.78
issn 2297-8747
2297-8747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749
source EZB-FREE-00999 freely available EZB journals
subjects CFD
elliptical tube
FLUENT
heat exchanger
nanofluid
title Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofluid%20Convective%20Heat%20Transfer%20Enhancement%20Elliptical%20Tube%20inside%20Circular%20Tube%20under%20Turbulent%20Flow&rft.jtitle=Mathematical%20and%20computational%20applications&rft.au=Danook,%20Suad%20Hassan&rft.date=2018-12-01&rft.volume=23&rft.issue=4&rft.spage=78&rft.pages=78-&rft.issn=2297-8747&rft.eissn=2297-8747&rft_id=info:doi/10.3390/mca23040078&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1b5af3a752c843c6b0009d4ae3c01749%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-f95d536b18a08376fcdb44f3e6ce5f7b5af34fd17398b43a25a1386bf618c7ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true