Loading…

Mercury Plumes in the Global Upper Troposphere Observed during Flights with the CARIBIC Observatory from May 2005 until June 2013

Tropospheric sections of flights with the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) observatory from May 2005 until June 2013, are investigated for the occurrence of plumes with elevated Hg concentrations. Additional information on CO, CO...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2014-06, Vol.5 (2), p.342-369
Main Authors: Slemr, Franz, Weigelt, Andreas, Ebinghaus, Ralf, Brenninkmeijer, Carl, Baker, Angela, Schuck, Tanja, Rauthe-Schöch, Armin, Riede, Hella, Leedham, Emma, Hermann, Markus, Van Velthoven, Peter, Oram, David, O'Sullivan, Debbie, Dyroff, Christoph, Zahn, Andreas, Ziereis, Helmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropospheric sections of flights with the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) observatory from May 2005 until June 2013, are investigated for the occurrence of plumes with elevated Hg concentrations. Additional information on CO, CO2, CH4, NOy, O3, hydrocarbons, halocarbons, acetone and acetonitrile enable us to attribute the plumes to biomass burning, urban/industrial sources or a mixture of both. Altogether, 98 pollution plumes with elevated Hg concentrations and CO mixing ratios were encountered, and the Hg/CO emission ratios for 49 of them could be calculated. Most of the plumes were found over East Asia, in the African equatorial region, over South America and over Pakistan and India. The plumes encountered over equatorial Africa and over South America originate predominantly from biomass burning, as evidenced by the low Hg/CO emission ratios and elevated mixing ratios of acetonitrile, CH3Cl and particle concentrations. The backward trajectories point to the regions around the Rift Valley and the Amazon Basin, with its outskirts, as the source areas. The plumes encountered over East Asia and over Pakistan and India are predominantly of urban/industrial origin, sometimes mixed with products of biomass/biofuel burning. Backward trajectories point mostly to source areas in China and northern India. The Hg/CO2 and Hg/CH4 emission ratios for several plumes are also presented and discussed.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos5020342