Loading…

Durative sleep fragmentation with or without hypertension suppress rapid eye movement sleep and generate cerebrovascular dysfunction

Either hypertension or chronic insomnia is the risk factor of developing vascular dementia. Durative hypertension can induce vascular remodeling and is used for modeling small vessel disease in rodents. It remains undetermined if the combination of hypertension and sleep disturbance exacerbates vasc...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease 2023-08, Vol.184, p.106222-106222, Article 106222
Main Authors: Xue, Yang, Tang, Jie, Zhang, Miaoyi, He, Yifan, Fu, Jianhui, Ding, Fengfei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Either hypertension or chronic insomnia is the risk factor of developing vascular dementia. Durative hypertension can induce vascular remodeling and is used for modeling small vessel disease in rodents. It remains undetermined if the combination of hypertension and sleep disturbance exacerbates vascular dysfunction or pathologies. Previously, we found chronic sleep fragmentation (SF) dampened cognition in young mice without disease predispositions. In the current study, we superimposed SF with hypertension modeling in young mice. Angiotensin II (AngII)-releasing osmotic mini pumps were subcutaneously implanted to generate persistent hypertension, while sham surgeries were performed as controls. Sleep fragmentation with repetitive arousals (10 s every 2 min) during light-on 12 h for consecutive 30 days, while mice undergoing normal sleep (NS) processes were set as controls. Sleep architectures, whisker-stimulated cerebral blood flow (CBF) changes, vascular responsiveness as well as vascular pathologies were compared among normal sleep plus sham (NS + sham), SF plus sham (SF + sham), normal sleep plus AngII (NS + AngII), and SF plus AngII (SF + AngII) groups. SF and hypertension both alter sleep structures, particularly suppressing REM sleep. SF no matter if combined with hypertension strongly suppressed whisker-stimulated CBF increase, suggesting the tight association with cognitive decline. Hypertension modeling sensitizes vascular responsiveness toward a vasoactive agent, Acetylcholine (ACh, 5 mg/ml, 10 μl) delivered via cisterna magna infusion, while SF exhibits a similar but much milder effect. None of the modeling above was sufficient to induce arterial or arteriole vascular remodeling, but SF or SF plus hypertension increased vascular network density constructed by all categories of cerebral vessels. The current study would potentially help understand the pathogenesis of vascular dementia, and the interconnection between sleep and vascular health. •Sleep fragmentation and hypertension both suppress REM sleep.•Sleep fragmentation with or without hypertension impair neurovascular coupling.•Hypertension sensitizes vascular responsiveness.•Vascular remodeling was not found in sleep fragmentation or hypertension.•Sleep fragmentation with or without hypertension increase vascular density.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2023.106222