Loading…
Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atm...
Saved in:
Published in: | Nature communications 2020-10, Vol.11 (1), p.5437-5437, Article 5437 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3 |
container_end_page | 5437 |
container_issue | 1 |
container_start_page | 5437 |
container_title | Nature communications |
container_volume | 11 |
creator | Li, Hongdong Han, Yi Zhao, Huan Qi, Wenjing Zhang, Dan Yu, Yaodong Cai, Wenwen Li, Shaoxiang Lai, Jianping Huang, Bolong Wang, Lei |
description | Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt
18
Ni
26
Fe
15
Co
14
Cu
27
nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt
18
Ni
26
Fe
15
Co
14
Cu
27
/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm
−2
, excellent activity (10.96 A mg
−1
Pt
at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg
−1
Pt
) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.
The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H
2
evolution methanol oxidation reactions. |
doi_str_mv | 10.1038/s41467-020-19277-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084</doaj_id><sourcerecordid>2455836482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEsj4M7kgoYpCpUpc4GxNnHE2q6y92NmK_ff1bral5YAvY82883jGeoviLdQfoebNpyRAKF3VrK6gZVpX7YvinNUCKtCMv3xyPysuU1rX-fAWGiFeF2ecAyhg4ryga0xzmcaZqjlUh1jSRHaOwZdzRJ8cxTK4cjUOq4p8zm_3JU5T2JcefbA447TPhD6Od6Mfykh9-POAOFXH9KZ45XBKdHmKF8Wv668_r75Xtz--3Vx9ua2sqtVcSckdkrMduq5VmjMrqFWdJosNd4okOZZLQAqcZqSkEC0CNi2ojjmF_KK4Wbh9wLXZxnGDcW8CjuaYCHEwGOfRTmSga60TGhlBL_q-b6SQooHeyg6xbkRmfV5Y2123od4elsfpGfR5xY8rM4Q7o2UrQUIGfDgBYvi9ozSbzZgsTRN6CrtkmJCy4Uo0LEvf_yNdh130-auySoNkUh8nYovKxpBSJPc4DNTmYAqzmMJkU5ijKUybm949XeOx5cECWcAXQcolP1D8-_Z_sPdNTcV0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471525784</pqid></control><display><type>article</type><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</creator><creatorcontrib>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</creatorcontrib><description>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt
18
Ni
26
Fe
15
Co
14
Cu
27
nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt
18
Ni
26
Fe
15
Co
14
Cu
27
/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm
−2
, excellent activity (10.96 A mg
−1
Pt
at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg
−1
Pt
) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.
The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H
2
evolution methanol oxidation reactions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-19277-9</identifier><identifier>PMID: 33116124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/638/563/979 ; 639/638/77/884 ; 639/925/357/354 ; Alloys ; Catalysts ; Electrocatalysts ; Electron transfer ; Entropy ; High entropy alloys ; Humanities and Social Sciences ; Hydrogen evolution reactions ; Low temperature ; Methanol ; multidisciplinary ; Nanoalloys ; Nanocatalysis ; Nanoparticles ; Oxidation ; Redox reactions ; Reduction ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2020-10, Vol.11 (1), p.5437-5437, Article 5437</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</citedby><cites>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</cites><orcidid>0000-0002-2526-2002 ; 0000-0001-7275-4846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471525784/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471525784?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33116124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongdong</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yu, Yaodong</creatorcontrib><creatorcontrib>Cai, Wenwen</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Lai, Jianping</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt
18
Ni
26
Fe
15
Co
14
Cu
27
nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt
18
Ni
26
Fe
15
Co
14
Cu
27
/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm
−2
, excellent activity (10.96 A mg
−1
Pt
at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg
−1
Pt
) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.
The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H
2
evolution methanol oxidation reactions.</description><subject>639/301/299/886</subject><subject>639/638/563/979</subject><subject>639/638/77/884</subject><subject>639/925/357/354</subject><subject>Alloys</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen evolution reactions</subject><subject>Low temperature</subject><subject>Methanol</subject><subject>multidisciplinary</subject><subject>Nanoalloys</subject><subject>Nanocatalysis</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Redox reactions</subject><subject>Reduction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEsj4M7kgoYpCpUpc4GxNnHE2q6y92NmK_ff1bral5YAvY82883jGeoviLdQfoebNpyRAKF3VrK6gZVpX7YvinNUCKtCMv3xyPysuU1rX-fAWGiFeF2ecAyhg4ryga0xzmcaZqjlUh1jSRHaOwZdzRJ8cxTK4cjUOq4p8zm_3JU5T2JcefbA447TPhD6Od6Mfykh9-POAOFXH9KZ45XBKdHmKF8Wv668_r75Xtz--3Vx9ua2sqtVcSckdkrMduq5VmjMrqFWdJosNd4okOZZLQAqcZqSkEC0CNi2ojjmF_KK4Wbh9wLXZxnGDcW8CjuaYCHEwGOfRTmSga60TGhlBL_q-b6SQooHeyg6xbkRmfV5Y2123od4elsfpGfR5xY8rM4Q7o2UrQUIGfDgBYvi9ozSbzZgsTRN6CrtkmJCy4Uo0LEvf_yNdh130-auySoNkUh8nYovKxpBSJPc4DNTmYAqzmMJkU5ijKUybm949XeOx5cECWcAXQcolP1D8-_Z_sPdNTcV0</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Li, Hongdong</creator><creator>Han, Yi</creator><creator>Zhao, Huan</creator><creator>Qi, Wenjing</creator><creator>Zhang, Dan</creator><creator>Yu, Yaodong</creator><creator>Cai, Wenwen</creator><creator>Li, Shaoxiang</creator><creator>Lai, Jianping</creator><creator>Huang, Bolong</creator><creator>Wang, Lei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid></search><sort><creationdate>20201028</creationdate><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><author>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/886</topic><topic>639/638/563/979</topic><topic>639/638/77/884</topic><topic>639/925/357/354</topic><topic>Alloys</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen evolution reactions</topic><topic>Low temperature</topic><topic>Methanol</topic><topic>multidisciplinary</topic><topic>Nanoalloys</topic><topic>Nanocatalysis</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Redox reactions</topic><topic>Reduction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongdong</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yu, Yaodong</creatorcontrib><creatorcontrib>Cai, Wenwen</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Lai, Jianping</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongdong</au><au>Han, Yi</au><au>Zhao, Huan</au><au>Qi, Wenjing</au><au>Zhang, Dan</au><au>Yu, Yaodong</au><au>Cai, Wenwen</au><au>Li, Shaoxiang</au><au>Lai, Jianping</au><au>Huang, Bolong</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>5437</spage><epage>5437</epage><pages>5437-5437</pages><artnum>5437</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt
18
Ni
26
Fe
15
Co
14
Cu
27
nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt
18
Ni
26
Fe
15
Co
14
Cu
27
/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm
−2
, excellent activity (10.96 A mg
−1
Pt
at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg
−1
Pt
) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.
The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H
2
evolution methanol oxidation reactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33116124</pmid><doi>10.1038/s41467-020-19277-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-10, Vol.11 (1), p.5437-5437, Article 5437 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084 |
source | Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/299/886 639/638/563/979 639/638/77/884 639/925/357/354 Alloys Catalysts Electrocatalysts Electron transfer Entropy High entropy alloys Humanities and Social Sciences Hydrogen evolution reactions Low temperature Methanol multidisciplinary Nanoalloys Nanocatalysis Nanoparticles Oxidation Redox reactions Reduction Science Science (multidisciplinary) |
title | Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20site-to-site%20electron%20transfer%20of%20high-entropy%20alloy%20nanocatalyst%20driving%20redox%20electrocatalysis&rft.jtitle=Nature%20communications&rft.au=Li,%20Hongdong&rft.date=2020-10-28&rft.volume=11&rft.issue=1&rft.spage=5437&rft.epage=5437&rft.pages=5437-5437&rft.artnum=5437&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-19277-9&rft_dat=%3Cproquest_doaj_%3E2455836482%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471525784&rft_id=info:pmid/33116124&rfr_iscdi=true |