Loading…

Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis

Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atm...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-10, Vol.11 (1), p.5437-5437, Article 5437
Main Authors: Li, Hongdong, Han, Yi, Zhao, Huan, Qi, Wenjing, Zhang, Dan, Yu, Yaodong, Cai, Wenwen, Li, Shaoxiang, Lai, Jianping, Huang, Bolong, Wang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3
cites cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3
container_end_page 5437
container_issue 1
container_start_page 5437
container_title Nature communications
container_volume 11
creator Li, Hongdong
Han, Yi
Zhao, Huan
Qi, Wenjing
Zhang, Dan
Yu, Yaodong
Cai, Wenwen
Li, Shaoxiang
Lai, Jianping
Huang, Bolong
Wang, Lei
description Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt 18 Ni 26 Fe 15 Co 14 Cu 27 /C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm −2 , excellent activity (10.96 A mg −1 Pt at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg −1 Pt ) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes. The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H 2 evolution methanol oxidation reactions.
doi_str_mv 10.1038/s41467-020-19277-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084</doaj_id><sourcerecordid>2455836482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEsj4M7kgoYpCpUpc4GxNnHE2q6y92NmK_ff1bral5YAvY82883jGeoviLdQfoebNpyRAKF3VrK6gZVpX7YvinNUCKtCMv3xyPysuU1rX-fAWGiFeF2ecAyhg4ryga0xzmcaZqjlUh1jSRHaOwZdzRJ8cxTK4cjUOq4p8zm_3JU5T2JcefbA447TPhD6Od6Mfykh9-POAOFXH9KZ45XBKdHmKF8Wv668_r75Xtz--3Vx9ua2sqtVcSckdkrMduq5VmjMrqFWdJosNd4okOZZLQAqcZqSkEC0CNi2ojjmF_KK4Wbh9wLXZxnGDcW8CjuaYCHEwGOfRTmSga60TGhlBL_q-b6SQooHeyg6xbkRmfV5Y2123od4elsfpGfR5xY8rM4Q7o2UrQUIGfDgBYvi9ozSbzZgsTRN6CrtkmJCy4Uo0LEvf_yNdh130-auySoNkUh8nYovKxpBSJPc4DNTmYAqzmMJkU5ijKUybm949XeOx5cECWcAXQcolP1D8-_Z_sPdNTcV0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471525784</pqid></control><display><type>article</type><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</creator><creatorcontrib>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</creatorcontrib><description>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt 18 Ni 26 Fe 15 Co 14 Cu 27 /C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm −2 , excellent activity (10.96 A mg −1 Pt at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg −1 Pt ) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes. The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H 2 evolution methanol oxidation reactions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-19277-9</identifier><identifier>PMID: 33116124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/638/563/979 ; 639/638/77/884 ; 639/925/357/354 ; Alloys ; Catalysts ; Electrocatalysts ; Electron transfer ; Entropy ; High entropy alloys ; Humanities and Social Sciences ; Hydrogen evolution reactions ; Low temperature ; Methanol ; multidisciplinary ; Nanoalloys ; Nanocatalysis ; Nanoparticles ; Oxidation ; Redox reactions ; Reduction ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2020-10, Vol.11 (1), p.5437-5437, Article 5437</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</citedby><cites>FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</cites><orcidid>0000-0002-2526-2002 ; 0000-0001-7275-4846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471525784/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471525784?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33116124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongdong</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yu, Yaodong</creatorcontrib><creatorcontrib>Cai, Wenwen</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Lai, Jianping</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt 18 Ni 26 Fe 15 Co 14 Cu 27 /C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm −2 , excellent activity (10.96 A mg −1 Pt at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg −1 Pt ) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes. The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H 2 evolution methanol oxidation reactions.</description><subject>639/301/299/886</subject><subject>639/638/563/979</subject><subject>639/638/77/884</subject><subject>639/925/357/354</subject><subject>Alloys</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen evolution reactions</subject><subject>Low temperature</subject><subject>Methanol</subject><subject>multidisciplinary</subject><subject>Nanoalloys</subject><subject>Nanocatalysis</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Redox reactions</subject><subject>Reduction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEsj4M7kgoYpCpUpc4GxNnHE2q6y92NmK_ff1bral5YAvY82883jGeoviLdQfoebNpyRAKF3VrK6gZVpX7YvinNUCKtCMv3xyPysuU1rX-fAWGiFeF2ecAyhg4ryga0xzmcaZqjlUh1jSRHaOwZdzRJ8cxTK4cjUOq4p8zm_3JU5T2JcefbA447TPhD6Od6Mfykh9-POAOFXH9KZ45XBKdHmKF8Wv668_r75Xtz--3Vx9ua2sqtVcSckdkrMduq5VmjMrqFWdJosNd4okOZZLQAqcZqSkEC0CNi2ojjmF_KK4Wbh9wLXZxnGDcW8CjuaYCHEwGOfRTmSga60TGhlBL_q-b6SQooHeyg6xbkRmfV5Y2123od4elsfpGfR5xY8rM4Q7o2UrQUIGfDgBYvi9ozSbzZgsTRN6CrtkmJCy4Uo0LEvf_yNdh130-auySoNkUh8nYovKxpBSJPc4DNTmYAqzmMJkU5ijKUybm949XeOx5cECWcAXQcolP1D8-_Z_sPdNTcV0</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Li, Hongdong</creator><creator>Han, Yi</creator><creator>Zhao, Huan</creator><creator>Qi, Wenjing</creator><creator>Zhang, Dan</creator><creator>Yu, Yaodong</creator><creator>Cai, Wenwen</creator><creator>Li, Shaoxiang</creator><creator>Lai, Jianping</creator><creator>Huang, Bolong</creator><creator>Wang, Lei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid></search><sort><creationdate>20201028</creationdate><title>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</title><author>Li, Hongdong ; Han, Yi ; Zhao, Huan ; Qi, Wenjing ; Zhang, Dan ; Yu, Yaodong ; Cai, Wenwen ; Li, Shaoxiang ; Lai, Jianping ; Huang, Bolong ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/886</topic><topic>639/638/563/979</topic><topic>639/638/77/884</topic><topic>639/925/357/354</topic><topic>Alloys</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen evolution reactions</topic><topic>Low temperature</topic><topic>Methanol</topic><topic>multidisciplinary</topic><topic>Nanoalloys</topic><topic>Nanocatalysis</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Redox reactions</topic><topic>Reduction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongdong</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yu, Yaodong</creatorcontrib><creatorcontrib>Cai, Wenwen</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Lai, Jianping</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongdong</au><au>Han, Yi</au><au>Zhao, Huan</au><au>Qi, Wenjing</au><au>Zhang, Dan</au><au>Yu, Yaodong</au><au>Cai, Wenwen</au><au>Li, Shaoxiang</au><au>Lai, Jianping</au><au>Huang, Bolong</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>5437</spage><epage>5437</epage><pages>5437-5437</pages><artnum>5437</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt 18 Ni 26 Fe 15 Co 14 Cu 27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt 18 Ni 26 Fe 15 Co 14 Cu 27 /C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm −2 , excellent activity (10.96 A mg −1 Pt at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg −1 Pt ) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes. The design of nanostructured catalysts plays a key role in the electrocatalytic redox reaction performances. Here, authors prepared uniform and small-sized high-entropy alloy PtNiFeCoCu nanoparticles that showed improved activities for H 2 evolution methanol oxidation reactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33116124</pmid><doi>10.1038/s41467-020-19277-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-10, Vol.11 (1), p.5437-5437, Article 5437
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1b9cf47a2e1d4ddd8545481dc5baa084
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/886
639/638/563/979
639/638/77/884
639/925/357/354
Alloys
Catalysts
Electrocatalysts
Electron transfer
Entropy
High entropy alloys
Humanities and Social Sciences
Hydrogen evolution reactions
Low temperature
Methanol
multidisciplinary
Nanoalloys
Nanocatalysis
Nanoparticles
Oxidation
Redox reactions
Reduction
Science
Science (multidisciplinary)
title Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20site-to-site%20electron%20transfer%20of%20high-entropy%20alloy%20nanocatalyst%20driving%20redox%20electrocatalysis&rft.jtitle=Nature%20communications&rft.au=Li,%20Hongdong&rft.date=2020-10-28&rft.volume=11&rft.issue=1&rft.spage=5437&rft.epage=5437&rft.pages=5437-5437&rft.artnum=5437&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-19277-9&rft_dat=%3Cproquest_doaj_%3E2455836482%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-553faefcbafb96732c4e96b7eca83f6e5ef2afb1e61f72e65449a1a8916b2f6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471525784&rft_id=info:pmid/33116124&rfr_iscdi=true