Loading…
Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability
For a non-decreasing sequence of positive integers tending to infinity $\lambda=(\lambda_m)$ such that $\lambda_{m+1}-\lambda_m\leq 1$, $\lambda_1=1$; $(V,\lambda)$-summability has been defined as the limit of the generalized de la Val\'{e}e-Pousin of a sequence, [10]. In the present research,...
Saved in:
Published in: | Universal journal of mathematics and applications 2021-06, Vol.4 (2), p.70-75 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3 |
container_end_page | 75 |
container_issue | 2 |
container_start_page | 70 |
container_title | Universal journal of mathematics and applications |
container_volume | 4 |
creator | TEMİZER ERSOY, Merve |
description | For a non-decreasing sequence of positive integers tending to
infinity $\lambda=(\lambda_m)$ such that $\lambda_{m+1}-\lambda_m\leq 1$, $\lambda_1=1$;
$(V,\lambda)$-summability has been defined as the limit of the generalized de la Val\'{e}e-Pousin of a sequence, [10]. In the present research, we will establish some Tauberian, Abelian and Core Theorems related to the $(V,\lambda)$-summability. |
doi_str_mv | 10.32323/ujma.909885 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1baf7408099849ccbfd00f375e4a35ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1baf7408099849ccbfd00f375e4a35ac</doaj_id><sourcerecordid>oai_doaj_org_article_1baf7408099849ccbfd00f375e4a35ac</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGp3_oAsulDo1EwyySTLUvwoFIS2uhLCS_LGTpnpSGa66L93bEXkLe7lLs6DQ8htyqaC9_dw2NUwNcxoLS_IgKvUJEZJcfmvX5NR2-4YY9xwmWVsQFbrpkY6c1iVsJ_QDRwcxr5S2Ac6byLSzRb7qFu6wgo6DLRraLdFOr57n3xUULsA9-NkfahrcGVVdscbclVA1eLoN4fk7elxM39Jlq_Pi_lsmfj-t0yCyHIT8jwoYbzgkulUqYy74D1y4zgWShqfc1YIocALDcZpERjoFHItUQzJ4swNDezsVyxriEfbQGlPQxM_LcSu9BXa1EGRZ0wzY3RmvHdFYD03l5iBkD18SCZnlo9N20Ys_ngpsye99kevPesV3_mGa7w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability</title><source>DOAJ Directory of Open Access Journals</source><creator>TEMİZER ERSOY, Merve</creator><creatorcontrib>TEMİZER ERSOY, Merve</creatorcontrib><description>For a non-decreasing sequence of positive integers tending to
infinity $\lambda=(\lambda_m)$ such that $\lambda_{m+1}-\lambda_m\leq 1$, $\lambda_1=1$;
$(V,\lambda)$-summability has been defined as the limit of the generalized de la Val\'{e}e-Pousin of a sequence, [10]. In the present research, we will establish some Tauberian, Abelian and Core Theorems related to the $(V,\lambda)$-summability.</description><identifier>ISSN: 2619-9653</identifier><identifier>EISSN: 2619-9653</identifier><identifier>DOI: 10.32323/ujma.909885</identifier><language>eng</language><publisher>Emrah Evren KARA</publisher><subject>a$-statistically convergence ; core theorems ; matrix transformations</subject><ispartof>Universal journal of mathematics and applications, 2021-06, Vol.4 (2), p.70-75</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3</citedby><cites>FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>TEMİZER ERSOY, Merve</creatorcontrib><title>Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability</title><title>Universal journal of mathematics and applications</title><description>For a non-decreasing sequence of positive integers tending to
infinity $\lambda=(\lambda_m)$ such that $\lambda_{m+1}-\lambda_m\leq 1$, $\lambda_1=1$;
$(V,\lambda)$-summability has been defined as the limit of the generalized de la Val\'{e}e-Pousin of a sequence, [10]. In the present research, we will establish some Tauberian, Abelian and Core Theorems related to the $(V,\lambda)$-summability.</description><subject>a$-statistically convergence</subject><subject>core theorems</subject><subject>matrix transformations</subject><issn>2619-9653</issn><issn>2619-9653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEURYMoWGp3_oAsulDo1EwyySTLUvwoFIS2uhLCS_LGTpnpSGa66L93bEXkLe7lLs6DQ8htyqaC9_dw2NUwNcxoLS_IgKvUJEZJcfmvX5NR2-4YY9xwmWVsQFbrpkY6c1iVsJ_QDRwcxr5S2Ac6byLSzRb7qFu6wgo6DLRraLdFOr57n3xUULsA9-NkfahrcGVVdscbclVA1eLoN4fk7elxM39Jlq_Pi_lsmfj-t0yCyHIT8jwoYbzgkulUqYy74D1y4zgWShqfc1YIocALDcZpERjoFHItUQzJ4swNDezsVyxriEfbQGlPQxM_LcSu9BXa1EGRZ0wzY3RmvHdFYD03l5iBkD18SCZnlo9N20Ys_ngpsye99kevPesV3_mGa7w</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>TEMİZER ERSOY, Merve</creator><general>Emrah Evren KARA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20210630</creationdate><title>Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability</title><author>TEMİZER ERSOY, Merve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>a$-statistically convergence</topic><topic>core theorems</topic><topic>matrix transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>TEMİZER ERSOY, Merve</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Universal journal of mathematics and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEMİZER ERSOY, Merve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability</atitle><jtitle>Universal journal of mathematics and applications</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>4</volume><issue>2</issue><spage>70</spage><epage>75</epage><pages>70-75</pages><issn>2619-9653</issn><eissn>2619-9653</eissn><abstract>For a non-decreasing sequence of positive integers tending to
infinity $\lambda=(\lambda_m)$ such that $\lambda_{m+1}-\lambda_m\leq 1$, $\lambda_1=1$;
$(V,\lambda)$-summability has been defined as the limit of the generalized de la Val\'{e}e-Pousin of a sequence, [10]. In the present research, we will establish some Tauberian, Abelian and Core Theorems related to the $(V,\lambda)$-summability.</abstract><pub>Emrah Evren KARA</pub><doi>10.32323/ujma.909885</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2619-9653 |
ispartof | Universal journal of mathematics and applications, 2021-06, Vol.4 (2), p.70-75 |
issn | 2619-9653 2619-9653 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1baf7408099849ccbfd00f375e4a35ac |
source | DOAJ Directory of Open Access Journals |
subjects | a$-statistically convergence core theorems matrix transformations |
title | Some Abelian, Tauberian and Core Theorems Related to the $(V,\lambda)$-Summability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Abelian,%20Tauberian%20and%20Core%20Theorems%20Related%20to%20the%20$(V,%5Clambda)$-Summability&rft.jtitle=Universal%20journal%20of%20mathematics%20and%20applications&rft.au=TEM%C4%B0ZER%20ERSOY,%20Merve&rft.date=2021-06-30&rft.volume=4&rft.issue=2&rft.spage=70&rft.epage=75&rft.pages=70-75&rft.issn=2619-9653&rft.eissn=2619-9653&rft_id=info:doi/10.32323/ujma.909885&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1baf7408099849ccbfd00f375e4a35ac%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-d3479d77d639c3250816642bdcce29b2ef659c720f336ac38a9b83d0a81a785e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |