Loading…
Friedrichs extension of singular symmetric differential operators
For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular proble...
Saved in:
Published in: | Electronic journal of differential equations 2023-03, Vol.Special Issues (Special Issue 02), p.11-39 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023 |
container_end_page | 39 |
container_issue | Special Issue 02 |
container_start_page | 11 |
container_title | Electronic journal of differential equations |
container_volume | Special Issues |
creator | Bao, Qinglan Wei, Guangsheng Zettl, Anton |
description | For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.
See also https://ejde.math.txstate.edu/special/02/b1/abstr.html |
doi_str_mv | 10.58997/ejde.sp.02.b1 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</doaj_id><sourcerecordid>oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</originalsourceid><addsrcrecordid>eNpN0M1KAzEUBeAgCtbq1vW8wIxJJpkky1KsFgpudB3yc1NTppMhGcG-vbWV4upcDpdvcRB6JLjhUinxBDsPTRkbTBtLrtCMYEHrrlPk-t99i-5K2WFMFKNshharHMHn6D5LBd8TDCWmoUqhKnHYfvUmV-Ww38N0_Kh8DAEyDFM0fZVGyGZKudyjm2D6Ag9_OUcfq-f35Wu9eXtZLxeb2tEWT7WRrAVCOGk9dyqAYYQQ12HAkiknO6O4EbKT3gdDFQUuOLWKWm4lCIVpO0frs-uT2ekxx73JB51M1Kci5a02eYquB02s5UfUttwBYxhL54WzTnQdZiFQdbSas-VyKiVDuHgE69OY-ndMXUaNqbak_QE9eGor</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Friedrichs extension of singular symmetric differential operators</title><source>Directory of Open Access Journals</source><creator>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</creator><creatorcontrib>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</creatorcontrib><description>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.
See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</description><identifier>ISSN: 1072-6691</identifier><identifier>EISSN: 1072-6691</identifier><identifier>DOI: 10.58997/ejde.sp.02.b1</identifier><language>eng</language><publisher>Texas State University</publisher><subject>boundary matrix ; friedrichs extension ; regular differential expression</subject><ispartof>Electronic journal of differential equations, 2023-03, Vol.Special Issues (Special Issue 02), p.11-39</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Qinglan</creatorcontrib><creatorcontrib>Wei, Guangsheng</creatorcontrib><creatorcontrib>Zettl, Anton</creatorcontrib><title>Friedrichs extension of singular symmetric differential operators</title><title>Electronic journal of differential equations</title><description>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.
See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</description><subject>boundary matrix</subject><subject>friedrichs extension</subject><subject>regular differential expression</subject><issn>1072-6691</issn><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0M1KAzEUBeAgCtbq1vW8wIxJJpkky1KsFgpudB3yc1NTppMhGcG-vbWV4upcDpdvcRB6JLjhUinxBDsPTRkbTBtLrtCMYEHrrlPk-t99i-5K2WFMFKNshharHMHn6D5LBd8TDCWmoUqhKnHYfvUmV-Ww38N0_Kh8DAEyDFM0fZVGyGZKudyjm2D6Ag9_OUcfq-f35Wu9eXtZLxeb2tEWT7WRrAVCOGk9dyqAYYQQ12HAkiknO6O4EbKT3gdDFQUuOLWKWm4lCIVpO0frs-uT2ekxx73JB51M1Kci5a02eYquB02s5UfUttwBYxhL54WzTnQdZiFQdbSas-VyKiVDuHgE69OY-ndMXUaNqbak_QE9eGor</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Bao, Qinglan</creator><creator>Wei, Guangsheng</creator><creator>Zettl, Anton</creator><general>Texas State University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20230327</creationdate><title>Friedrichs extension of singular symmetric differential operators</title><author>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>boundary matrix</topic><topic>friedrichs extension</topic><topic>regular differential expression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Qinglan</creatorcontrib><creatorcontrib>Wei, Guangsheng</creatorcontrib><creatorcontrib>Zettl, Anton</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Qinglan</au><au>Wei, Guangsheng</au><au>Zettl, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friedrichs extension of singular symmetric differential operators</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2023-03-27</date><risdate>2023</risdate><volume>Special Issues</volume><issue>Special Issue 02</issue><spage>11</spage><epage>39</epage><pages>11-39</pages><issn>1072-6691</issn><eissn>1072-6691</eissn><abstract>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.
See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</abstract><pub>Texas State University</pub><doi>10.58997/ejde.sp.02.b1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-6691 |
ispartof | Electronic journal of differential equations, 2023-03, Vol.Special Issues (Special Issue 02), p.11-39 |
issn | 1072-6691 1072-6691 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29 |
source | Directory of Open Access Journals |
subjects | boundary matrix friedrichs extension regular differential expression |
title | Friedrichs extension of singular symmetric differential operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friedrichs%20extension%20of%20singular%20symmetric%20differential%20operators&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Bao,%20Qinglan&rft.date=2023-03-27&rft.volume=Special%20Issues&rft.issue=Special%20Issue%2002&rft.spage=11&rft.epage=39&rft.pages=11-39&rft.issn=1072-6691&rft.eissn=1072-6691&rft_id=info:doi/10.58997/ejde.sp.02.b1&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |