Loading…

Friedrichs extension of singular symmetric differential operators

For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular proble...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations 2023-03, Vol.Special Issues (Special Issue 02), p.11-39
Main Authors: Bao, Qinglan, Wei, Guangsheng, Zettl, Anton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023
container_end_page 39
container_issue Special Issue 02
container_start_page 11
container_title Electronic journal of differential equations
container_volume Special Issues
creator Bao, Qinglan
Wei, Guangsheng
Zettl, Anton
description For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension. See also https://ejde.math.txstate.edu/special/02/b1/abstr.html
doi_str_mv 10.58997/ejde.sp.02.b1
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</doaj_id><sourcerecordid>oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</originalsourceid><addsrcrecordid>eNpN0M1KAzEUBeAgCtbq1vW8wIxJJpkky1KsFgpudB3yc1NTppMhGcG-vbWV4upcDpdvcRB6JLjhUinxBDsPTRkbTBtLrtCMYEHrrlPk-t99i-5K2WFMFKNshharHMHn6D5LBd8TDCWmoUqhKnHYfvUmV-Ww38N0_Kh8DAEyDFM0fZVGyGZKudyjm2D6Ag9_OUcfq-f35Wu9eXtZLxeb2tEWT7WRrAVCOGk9dyqAYYQQ12HAkiknO6O4EbKT3gdDFQUuOLWKWm4lCIVpO0frs-uT2ekxx73JB51M1Kci5a02eYquB02s5UfUttwBYxhL54WzTnQdZiFQdbSas-VyKiVDuHgE69OY-ndMXUaNqbak_QE9eGor</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Friedrichs extension of singular symmetric differential operators</title><source>Directory of Open Access Journals</source><creator>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</creator><creatorcontrib>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</creatorcontrib><description>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension. See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</description><identifier>ISSN: 1072-6691</identifier><identifier>EISSN: 1072-6691</identifier><identifier>DOI: 10.58997/ejde.sp.02.b1</identifier><language>eng</language><publisher>Texas State University</publisher><subject>boundary matrix ; friedrichs extension ; regular differential expression</subject><ispartof>Electronic journal of differential equations, 2023-03, Vol.Special Issues (Special Issue 02), p.11-39</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Qinglan</creatorcontrib><creatorcontrib>Wei, Guangsheng</creatorcontrib><creatorcontrib>Zettl, Anton</creatorcontrib><title>Friedrichs extension of singular symmetric differential operators</title><title>Electronic journal of differential equations</title><description>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension. See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</description><subject>boundary matrix</subject><subject>friedrichs extension</subject><subject>regular differential expression</subject><issn>1072-6691</issn><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0M1KAzEUBeAgCtbq1vW8wIxJJpkky1KsFgpudB3yc1NTppMhGcG-vbWV4upcDpdvcRB6JLjhUinxBDsPTRkbTBtLrtCMYEHrrlPk-t99i-5K2WFMFKNshharHMHn6D5LBd8TDCWmoUqhKnHYfvUmV-Ww38N0_Kh8DAEyDFM0fZVGyGZKudyjm2D6Ag9_OUcfq-f35Wu9eXtZLxeb2tEWT7WRrAVCOGk9dyqAYYQQ12HAkiknO6O4EbKT3gdDFQUuOLWKWm4lCIVpO0frs-uT2ekxx73JB51M1Kci5a02eYquB02s5UfUttwBYxhL54WzTnQdZiFQdbSas-VyKiVDuHgE69OY-ndMXUaNqbak_QE9eGor</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Bao, Qinglan</creator><creator>Wei, Guangsheng</creator><creator>Zettl, Anton</creator><general>Texas State University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20230327</creationdate><title>Friedrichs extension of singular symmetric differential operators</title><author>Bao, Qinglan ; Wei, Guangsheng ; Zettl, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>boundary matrix</topic><topic>friedrichs extension</topic><topic>regular differential expression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Qinglan</creatorcontrib><creatorcontrib>Wei, Guangsheng</creatorcontrib><creatorcontrib>Zettl, Anton</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Qinglan</au><au>Wei, Guangsheng</au><au>Zettl, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friedrichs extension of singular symmetric differential operators</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2023-03-27</date><risdate>2023</risdate><volume>Special Issues</volume><issue>Special Issue 02</issue><spage>11</spage><epage>39</epage><pages>11-39</pages><issn>1072-6691</issn><eissn>1072-6691</eissn><abstract>For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension. See also https://ejde.math.txstate.edu/special/02/b1/abstr.html</abstract><pub>Texas State University</pub><doi>10.58997/ejde.sp.02.b1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-6691
ispartof Electronic journal of differential equations, 2023-03, Vol.Special Issues (Special Issue 02), p.11-39
issn 1072-6691
1072-6691
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29
source Directory of Open Access Journals
subjects boundary matrix
friedrichs extension
regular differential expression
title Friedrichs extension of singular symmetric differential operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friedrichs%20extension%20of%20singular%20symmetric%20differential%20operators&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Bao,%20Qinglan&rft.date=2023-03-27&rft.volume=Special%20Issues&rft.issue=Special%20Issue%2002&rft.spage=11&rft.epage=39&rft.pages=11-39&rft.issn=1072-6691&rft.eissn=1072-6691&rft_id=info:doi/10.58997/ejde.sp.02.b1&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1bb549cb35ce44008cd7cbc76604ff29%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-a843e11513d5c9fea4111c60e0849c86a95a7868ddfa292e5752b92b5b8e79023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true