Loading…
Artificial Intelligence: The Milestone in Modern Biomedical Research
In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandator...
Saved in:
Published in: | BioMedInformatics 2022-12, Vol.2 (4), p.727-744 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953 |
---|---|
cites | cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953 |
container_end_page | 744 |
container_issue | 4 |
container_start_page | 727 |
container_title | BioMedInformatics |
container_volume | 2 |
creator | Athanasopoulou, Konstantina Daneva, Glykeria N. Adamopoulos, Panagiotis G. Scorilas, Andreas |
description | In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study. |
doi_str_mv | 10.3390/biomedinformatics2040049 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</doaj_id><sourcerecordid>oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGr_w_yB0bwmD3e1vgotgtT1kNy5aVOmE0lm47-3WhE3rs7lwPkO9xBSMXothKU3PqYDdnEIKR_cGKFwKimV9oxMuNKi1pKr8z_3JZmVsqeUcqMFt2ZC7ud5jCFCdH21HEbs-7jFAfC22uywWscey5gGrOJQrVOHeajuTp1wDLxiQZdhd0UugusLzn50St4eHzaL53r18rRczFc1cEtt7TV4rZkFyyBIA40wwEFb5jvFqaJWMMM6J6RTTTAIVHVAPXdKSem5bcSULE_cLrl9-57jweWPNrnYfhspb1t3fAd6bJkH0AEFPVZLj9IEEbRtvPNgPG_skWVOLMiplIzhl8do-zVu-9-44hOainKc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><source>Directory of Open Access Journals</source><creator>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</creator><creatorcontrib>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</creatorcontrib><description>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</description><identifier>ISSN: 2673-7426</identifier><identifier>EISSN: 2673-7426</identifier><identifier>DOI: 10.3390/biomedinformatics2040049</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>artificial intelligence ; bioinformatics ; biomedicine ; deep learning ; machine learning ; neural networks</subject><ispartof>BioMedInformatics, 2022-12, Vol.2 (4), p.727-744</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</citedby><cites>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</cites><orcidid>0000-0003-3939-357X ; 0000-0002-4071-6076 ; 0000-0003-2427-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,27923,27924</link.rule.ids></links><search><creatorcontrib>Athanasopoulou, Konstantina</creatorcontrib><creatorcontrib>Daneva, Glykeria N.</creatorcontrib><creatorcontrib>Adamopoulos, Panagiotis G.</creatorcontrib><creatorcontrib>Scorilas, Andreas</creatorcontrib><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><title>BioMedInformatics</title><description>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</description><subject>artificial intelligence</subject><subject>bioinformatics</subject><subject>biomedicine</subject><subject>deep learning</subject><subject>machine learning</subject><subject>neural networks</subject><issn>2673-7426</issn><issn>2673-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtLAzEUhYMoWGr_w_yB0bwmD3e1vgotgtT1kNy5aVOmE0lm47-3WhE3rs7lwPkO9xBSMXothKU3PqYDdnEIKR_cGKFwKimV9oxMuNKi1pKr8z_3JZmVsqeUcqMFt2ZC7ud5jCFCdH21HEbs-7jFAfC22uywWscey5gGrOJQrVOHeajuTp1wDLxiQZdhd0UugusLzn50St4eHzaL53r18rRczFc1cEtt7TV4rZkFyyBIA40wwEFb5jvFqaJWMMM6J6RTTTAIVHVAPXdKSem5bcSULE_cLrl9-57jweWPNrnYfhspb1t3fAd6bJkH0AEFPVZLj9IEEbRtvPNgPG_skWVOLMiplIzhl8do-zVu-9-44hOainKc</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Athanasopoulou, Konstantina</creator><creator>Daneva, Glykeria N.</creator><creator>Adamopoulos, Panagiotis G.</creator><creator>Scorilas, Andreas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3939-357X</orcidid><orcidid>https://orcid.org/0000-0002-4071-6076</orcidid><orcidid>https://orcid.org/0000-0003-2427-4949</orcidid></search><sort><creationdate>20221201</creationdate><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><author>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial intelligence</topic><topic>bioinformatics</topic><topic>biomedicine</topic><topic>deep learning</topic><topic>machine learning</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulou, Konstantina</creatorcontrib><creatorcontrib>Daneva, Glykeria N.</creatorcontrib><creatorcontrib>Adamopoulos, Panagiotis G.</creatorcontrib><creatorcontrib>Scorilas, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>BioMedInformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasopoulou, Konstantina</au><au>Daneva, Glykeria N.</au><au>Adamopoulos, Panagiotis G.</au><au>Scorilas, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence: The Milestone in Modern Biomedical Research</atitle><jtitle>BioMedInformatics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>727</spage><epage>744</epage><pages>727-744</pages><issn>2673-7426</issn><eissn>2673-7426</eissn><abstract>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</abstract><pub>MDPI AG</pub><doi>10.3390/biomedinformatics2040049</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3939-357X</orcidid><orcidid>https://orcid.org/0000-0002-4071-6076</orcidid><orcidid>https://orcid.org/0000-0003-2427-4949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-7426 |
ispartof | BioMedInformatics, 2022-12, Vol.2 (4), p.727-744 |
issn | 2673-7426 2673-7426 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259 |
source | Directory of Open Access Journals |
subjects | artificial intelligence bioinformatics biomedicine deep learning machine learning neural networks |
title | Artificial Intelligence: The Milestone in Modern Biomedical Research |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence:%20The%20Milestone%20in%20Modern%20Biomedical%20Research&rft.jtitle=BioMedInformatics&rft.au=Athanasopoulou,%20Konstantina&rft.date=2022-12-01&rft.volume=2&rft.issue=4&rft.spage=727&rft.epage=744&rft.pages=727-744&rft.issn=2673-7426&rft.eissn=2673-7426&rft_id=info:doi/10.3390/biomedinformatics2040049&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |