Loading…

Artificial Intelligence: The Milestone in Modern Biomedical Research

In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandator...

Full description

Saved in:
Bibliographic Details
Published in:BioMedInformatics 2022-12, Vol.2 (4), p.727-744
Main Authors: Athanasopoulou, Konstantina, Daneva, Glykeria N., Adamopoulos, Panagiotis G., Scorilas, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953
cites cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953
container_end_page 744
container_issue 4
container_start_page 727
container_title BioMedInformatics
container_volume 2
creator Athanasopoulou, Konstantina
Daneva, Glykeria N.
Adamopoulos, Panagiotis G.
Scorilas, Andreas
description In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.
doi_str_mv 10.3390/biomedinformatics2040049
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</doaj_id><sourcerecordid>oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGr_w_yB0bwmD3e1vgotgtT1kNy5aVOmE0lm47-3WhE3rs7lwPkO9xBSMXothKU3PqYDdnEIKR_cGKFwKimV9oxMuNKi1pKr8z_3JZmVsqeUcqMFt2ZC7ud5jCFCdH21HEbs-7jFAfC22uywWscey5gGrOJQrVOHeajuTp1wDLxiQZdhd0UugusLzn50St4eHzaL53r18rRczFc1cEtt7TV4rZkFyyBIA40wwEFb5jvFqaJWMMM6J6RTTTAIVHVAPXdKSem5bcSULE_cLrl9-57jweWPNrnYfhspb1t3fAd6bJkH0AEFPVZLj9IEEbRtvPNgPG_skWVOLMiplIzhl8do-zVu-9-44hOainKc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><source>Directory of Open Access Journals</source><creator>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</creator><creatorcontrib>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</creatorcontrib><description>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</description><identifier>ISSN: 2673-7426</identifier><identifier>EISSN: 2673-7426</identifier><identifier>DOI: 10.3390/biomedinformatics2040049</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>artificial intelligence ; bioinformatics ; biomedicine ; deep learning ; machine learning ; neural networks</subject><ispartof>BioMedInformatics, 2022-12, Vol.2 (4), p.727-744</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</citedby><cites>FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</cites><orcidid>0000-0003-3939-357X ; 0000-0002-4071-6076 ; 0000-0003-2427-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,27923,27924</link.rule.ids></links><search><creatorcontrib>Athanasopoulou, Konstantina</creatorcontrib><creatorcontrib>Daneva, Glykeria N.</creatorcontrib><creatorcontrib>Adamopoulos, Panagiotis G.</creatorcontrib><creatorcontrib>Scorilas, Andreas</creatorcontrib><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><title>BioMedInformatics</title><description>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</description><subject>artificial intelligence</subject><subject>bioinformatics</subject><subject>biomedicine</subject><subject>deep learning</subject><subject>machine learning</subject><subject>neural networks</subject><issn>2673-7426</issn><issn>2673-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtLAzEUhYMoWGr_w_yB0bwmD3e1vgotgtT1kNy5aVOmE0lm47-3WhE3rs7lwPkO9xBSMXothKU3PqYDdnEIKR_cGKFwKimV9oxMuNKi1pKr8z_3JZmVsqeUcqMFt2ZC7ud5jCFCdH21HEbs-7jFAfC22uywWscey5gGrOJQrVOHeajuTp1wDLxiQZdhd0UugusLzn50St4eHzaL53r18rRczFc1cEtt7TV4rZkFyyBIA40wwEFb5jvFqaJWMMM6J6RTTTAIVHVAPXdKSem5bcSULE_cLrl9-57jweWPNrnYfhspb1t3fAd6bJkH0AEFPVZLj9IEEbRtvPNgPG_skWVOLMiplIzhl8do-zVu-9-44hOainKc</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Athanasopoulou, Konstantina</creator><creator>Daneva, Glykeria N.</creator><creator>Adamopoulos, Panagiotis G.</creator><creator>Scorilas, Andreas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3939-357X</orcidid><orcidid>https://orcid.org/0000-0002-4071-6076</orcidid><orcidid>https://orcid.org/0000-0003-2427-4949</orcidid></search><sort><creationdate>20221201</creationdate><title>Artificial Intelligence: The Milestone in Modern Biomedical Research</title><author>Athanasopoulou, Konstantina ; Daneva, Glykeria N. ; Adamopoulos, Panagiotis G. ; Scorilas, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial intelligence</topic><topic>bioinformatics</topic><topic>biomedicine</topic><topic>deep learning</topic><topic>machine learning</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulou, Konstantina</creatorcontrib><creatorcontrib>Daneva, Glykeria N.</creatorcontrib><creatorcontrib>Adamopoulos, Panagiotis G.</creatorcontrib><creatorcontrib>Scorilas, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>BioMedInformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasopoulou, Konstantina</au><au>Daneva, Glykeria N.</au><au>Adamopoulos, Panagiotis G.</au><au>Scorilas, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence: The Milestone in Modern Biomedical Research</atitle><jtitle>BioMedInformatics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>727</spage><epage>744</epage><pages>727-744</pages><issn>2673-7426</issn><eissn>2673-7426</eissn><abstract>In recent years, the advent of new experimental methodologies for studying the high complexity of the human genome and proteome has led to the generation of an increasing amount of digital information, hence bioinformatics, which harnesses computer science, biology, and chemistry, playing a mandatory role for the analysis of the produced datasets. The emerging technology of Artificial Intelligence (AI), including Machine Learning (ML) and Artificial Neural Networks (ANNs), is nowadays at the core of biomedical research and has already paved the way for significant breakthroughs in both biological and medical sciences. AI and computer science have transformed traditional medicine into modern biomedicine, thus promising a new era in systems biology that will enhance drug discovery strategies and facilitate clinical practice. The current review defines the main categories of AI and thoroughly describes the fundamental principles of the widely used ML, ANNs and DL approaches. Furthermore, we aim to underline the determinant role of AI-based methods in various biological research fields, such as proteomics and drug design techniques, and finally, investigate the implication of AI in everyday clinical practice and healthcare systems. Finally, this review also highlights the challenges and future directions of AI in Modern Biomedical study.</abstract><pub>MDPI AG</pub><doi>10.3390/biomedinformatics2040049</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3939-357X</orcidid><orcidid>https://orcid.org/0000-0002-4071-6076</orcidid><orcidid>https://orcid.org/0000-0003-2427-4949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-7426
ispartof BioMedInformatics, 2022-12, Vol.2 (4), p.727-744
issn 2673-7426
2673-7426
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259
source Directory of Open Access Journals
subjects artificial intelligence
bioinformatics
biomedicine
deep learning
machine learning
neural networks
title Artificial Intelligence: The Milestone in Modern Biomedical Research
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence:%20The%20Milestone%20in%20Modern%20Biomedical%20Research&rft.jtitle=BioMedInformatics&rft.au=Athanasopoulou,%20Konstantina&rft.date=2022-12-01&rft.volume=2&rft.issue=4&rft.spage=727&rft.epage=744&rft.pages=727-744&rft.issn=2673-7426&rft.eissn=2673-7426&rft_id=info:doi/10.3390/biomedinformatics2040049&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1bcc7fe30c294be48f3f795babc8b259%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2909-b7cb7719c91cf48c538c2c791bd6206093181da34a65f8ec06dc0b2a6644b2953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true