Loading…
Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection
Optimization algorithms are pivotal in addressing complex problems across diverse domains, including global optimization and feature selection (FS). In this paper, we introduce the Enhanced Crisscross Parrot Optimizer (ECPO), an improved version of the Parrot Optimizer (PO), designed to address thes...
Saved in:
Published in: | Biomimetics (Basel, Switzerland) Switzerland), 2024-10, Vol.9 (11), p.662 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-7136f7d94b3e4a51240e9d77df2acb5974e1fc5192d3f4b6af74bfb71e7bc6e33 |
container_end_page | |
container_issue | 11 |
container_start_page | 662 |
container_title | Biomimetics (Basel, Switzerland) |
container_volume | 9 |
creator | Chen, Tian Yi, Yuanyuan |
description | Optimization algorithms are pivotal in addressing complex problems across diverse domains, including global optimization and feature selection (FS). In this paper, we introduce the Enhanced Crisscross Parrot Optimizer (ECPO), an improved version of the Parrot Optimizer (PO), designed to address these challenges effectively. The ECPO incorporates a sophisticated strategy selection mechanism that allows individuals to retain successful behaviors from prior iterations and shift to alternative strategies in case of update failures. Additionally, the integration of a crisscross (CC) mechanism promotes more effective information exchange among individuals, enhancing the algorithm's exploration capabilities. The proposed algorithm's performance is evaluated through extensive experiments on the CEC2017 benchmark functions, where it is compared with ten other conventional optimization algorithms. Results demonstrate that the ECPO consistently outperforms these algorithms across various fitness landscapes. Furthermore, a binary version of the ECPO is developed and applied to FS problems on ten real-world datasets, demonstrating its ability to achieve competitive error rates with reduced feature subsets. These findings suggest that the ECPO holds promise as an effective approach for both global optimization and feature selection. |
doi_str_mv | 10.3390/biomimetics9110662 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1be11f31e83e47f49c30718c72e5c9dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818093824</galeid><doaj_id>oai_doaj_org_article_1be11f31e83e47f49c30718c72e5c9dd</doaj_id><sourcerecordid>A818093824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-7136f7d94b3e4a51240e9d77df2acb5974e1fc5192d3f4b6af74bfb71e7bc6e33</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIVqU_wAFF4sJli8d24pgLqqq2VCoq0sLZcuzx1qvEXhwHqXw9XrYtXUA-2Hrz3hvN81TVayAnjEnyvvdx9CNmbyYJQNqWPqsOKQO2EK1gz5-8D6rjaVoTQkC2DefkZXXAZCMJZfywWn6eh-wXy5x0xtVdfR5udTBo6y86pZjrm032o_-J6UN9OcReDw-Izj6GWgdbX6DOc8J6iQOaLfqqeuH0MOHx_X1Ufbs4_3r2aXF9c3l1dnq9MJw3eSGAtU5YyXuGXDdAOUFphbCOatM3UnAEZxqQ1DLH-1Y7wXvXC0DRmxYZO6qudr426rXaJD_qdKei9uo3ENNK6VQCGlBBjwCOAXall3BcGkYEdEZQbIy0tnh93Hlt5n5EazCURIY90_1K8LdqFX8ogEZC19Li8O7eIcXvM05ZjX4yOAw6YJwnVb6DcRBAm0J9-xd1HecUSlZbFu06TkH8Ya10mcAHF0tjszVVpx10RLKO8sI6-Q-rHIujNzGg8wXfE9CdwKQ4TQnd45BA1Ha11L-rVURvnsbzKHlYJPYLSyPMAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132884217</pqid></control><display><type>article</type><title>Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Chen, Tian ; Yi, Yuanyuan</creator><creatorcontrib>Chen, Tian ; Yi, Yuanyuan</creatorcontrib><description>Optimization algorithms are pivotal in addressing complex problems across diverse domains, including global optimization and feature selection (FS). In this paper, we introduce the Enhanced Crisscross Parrot Optimizer (ECPO), an improved version of the Parrot Optimizer (PO), designed to address these challenges effectively. The ECPO incorporates a sophisticated strategy selection mechanism that allows individuals to retain successful behaviors from prior iterations and shift to alternative strategies in case of update failures. Additionally, the integration of a crisscross (CC) mechanism promotes more effective information exchange among individuals, enhancing the algorithm's exploration capabilities. The proposed algorithm's performance is evaluated through extensive experiments on the CEC2017 benchmark functions, where it is compared with ten other conventional optimization algorithms. Results demonstrate that the ECPO consistently outperforms these algorithms across various fitness landscapes. Furthermore, a binary version of the ECPO is developed and applied to FS problems on ten real-world datasets, demonstrating its ability to achieve competitive error rates with reduced feature subsets. These findings suggest that the ECPO holds promise as an effective approach for both global optimization and feature selection.</description><identifier>ISSN: 2313-7673</identifier><identifier>EISSN: 2313-7673</identifier><identifier>DOI: 10.3390/biomimetics9110662</identifier><identifier>PMID: 39590234</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; bionic algorithm ; crisscross mechanism ; Datasets ; Decision making ; Experiments ; Feature selection ; Foraging behavior ; Genetic algorithms ; global optimization ; Machine learning ; Mathematical optimization ; metaheuristic algorithms ; Mutation ; Optimization algorithms ; parrot optimizer ; Parrots</subject><ispartof>Biomimetics (Basel, Switzerland), 2024-10, Vol.9 (11), p.662</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c445t-7136f7d94b3e4a51240e9d77df2acb5974e1fc5192d3f4b6af74bfb71e7bc6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3132884217/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3132884217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39590234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tian</creatorcontrib><creatorcontrib>Yi, Yuanyuan</creatorcontrib><title>Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection</title><title>Biomimetics (Basel, Switzerland)</title><addtitle>Biomimetics (Basel)</addtitle><description>Optimization algorithms are pivotal in addressing complex problems across diverse domains, including global optimization and feature selection (FS). In this paper, we introduce the Enhanced Crisscross Parrot Optimizer (ECPO), an improved version of the Parrot Optimizer (PO), designed to address these challenges effectively. The ECPO incorporates a sophisticated strategy selection mechanism that allows individuals to retain successful behaviors from prior iterations and shift to alternative strategies in case of update failures. Additionally, the integration of a crisscross (CC) mechanism promotes more effective information exchange among individuals, enhancing the algorithm's exploration capabilities. The proposed algorithm's performance is evaluated through extensive experiments on the CEC2017 benchmark functions, where it is compared with ten other conventional optimization algorithms. Results demonstrate that the ECPO consistently outperforms these algorithms across various fitness landscapes. Furthermore, a binary version of the ECPO is developed and applied to FS problems on ten real-world datasets, demonstrating its ability to achieve competitive error rates with reduced feature subsets. These findings suggest that the ECPO holds promise as an effective approach for both global optimization and feature selection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>bionic algorithm</subject><subject>crisscross mechanism</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Experiments</subject><subject>Feature selection</subject><subject>Foraging behavior</subject><subject>Genetic algorithms</subject><subject>global optimization</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>metaheuristic algorithms</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>parrot optimizer</subject><subject>Parrots</subject><issn>2313-7673</issn><issn>2313-7673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQjRCIVqU_wAFF4sJli8d24pgLqqq2VCoq0sLZcuzx1qvEXhwHqXw9XrYtXUA-2Hrz3hvN81TVayAnjEnyvvdx9CNmbyYJQNqWPqsOKQO2EK1gz5-8D6rjaVoTQkC2DefkZXXAZCMJZfywWn6eh-wXy5x0xtVdfR5udTBo6y86pZjrm032o_-J6UN9OcReDw-Izj6GWgdbX6DOc8J6iQOaLfqqeuH0MOHx_X1Ufbs4_3r2aXF9c3l1dnq9MJw3eSGAtU5YyXuGXDdAOUFphbCOatM3UnAEZxqQ1DLH-1Y7wXvXC0DRmxYZO6qudr426rXaJD_qdKei9uo3ENNK6VQCGlBBjwCOAXall3BcGkYEdEZQbIy0tnh93Hlt5n5EazCURIY90_1K8LdqFX8ogEZC19Li8O7eIcXvM05ZjX4yOAw6YJwnVb6DcRBAm0J9-xd1HecUSlZbFu06TkH8Ya10mcAHF0tjszVVpx10RLKO8sI6-Q-rHIujNzGg8wXfE9CdwKQ4TQnd45BA1Ha11L-rVURvnsbzKHlYJPYLSyPMAA</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Chen, Tian</creator><creator>Yi, Yuanyuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241031</creationdate><title>Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection</title><author>Chen, Tian ; Yi, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-7136f7d94b3e4a51240e9d77df2acb5974e1fc5192d3f4b6af74bfb71e7bc6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>bionic algorithm</topic><topic>crisscross mechanism</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Experiments</topic><topic>Feature selection</topic><topic>Foraging behavior</topic><topic>Genetic algorithms</topic><topic>global optimization</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>metaheuristic algorithms</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>parrot optimizer</topic><topic>Parrots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tian</creatorcontrib><creatorcontrib>Yi, Yuanyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomimetics (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tian</au><au>Yi, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection</atitle><jtitle>Biomimetics (Basel, Switzerland)</jtitle><addtitle>Biomimetics (Basel)</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>662</spage><pages>662-</pages><issn>2313-7673</issn><eissn>2313-7673</eissn><abstract>Optimization algorithms are pivotal in addressing complex problems across diverse domains, including global optimization and feature selection (FS). In this paper, we introduce the Enhanced Crisscross Parrot Optimizer (ECPO), an improved version of the Parrot Optimizer (PO), designed to address these challenges effectively. The ECPO incorporates a sophisticated strategy selection mechanism that allows individuals to retain successful behaviors from prior iterations and shift to alternative strategies in case of update failures. Additionally, the integration of a crisscross (CC) mechanism promotes more effective information exchange among individuals, enhancing the algorithm's exploration capabilities. The proposed algorithm's performance is evaluated through extensive experiments on the CEC2017 benchmark functions, where it is compared with ten other conventional optimization algorithms. Results demonstrate that the ECPO consistently outperforms these algorithms across various fitness landscapes. Furthermore, a binary version of the ECPO is developed and applied to FS problems on ten real-world datasets, demonstrating its ability to achieve competitive error rates with reduced feature subsets. These findings suggest that the ECPO holds promise as an effective approach for both global optimization and feature selection.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39590234</pmid><doi>10.3390/biomimetics9110662</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-7673 |
ispartof | Biomimetics (Basel, Switzerland), 2024-10, Vol.9 (11), p.662 |
issn | 2313-7673 2313-7673 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1be11f31e83e47f49c30718c72e5c9dd |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Accuracy Algorithms bionic algorithm crisscross mechanism Datasets Decision making Experiments Feature selection Foraging behavior Genetic algorithms global optimization Machine learning Mathematical optimization metaheuristic algorithms Mutation Optimization algorithms parrot optimizer Parrots |
title | Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Strategy%20Enhanced%20Parrot%20Optimizer:%20Global%20Optimization%20and%20Feature%20Selection&rft.jtitle=Biomimetics%20(Basel,%20Switzerland)&rft.au=Chen,%20Tian&rft.date=2024-10-31&rft.volume=9&rft.issue=11&rft.spage=662&rft.pages=662-&rft.issn=2313-7673&rft.eissn=2313-7673&rft_id=info:doi/10.3390/biomimetics9110662&rft_dat=%3Cgale_doaj_%3EA818093824%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-7136f7d94b3e4a51240e9d77df2acb5974e1fc5192d3f4b6af74bfb71e7bc6e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132884217&rft_id=info:pmid/39590234&rft_galeid=A818093824&rfr_iscdi=true |