Loading…

Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS

The operational challenge of a photovoltaic (PV) integrated system is the uncertainty (irregularity) of the future power output. The integration and correct operation can be carried out with accurate forecasting of the PV output power. A distinct artificial intelligence method was employed in the pr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-10, Vol.9 (19), p.2438
Main Authors: Chen, Chao-Rong, Ouedraogo, Faouzi Brice, Chang, Yu-Ming, Larasati, Devita Ayu, Tan, Shih-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The operational challenge of a photovoltaic (PV) integrated system is the uncertainty (irregularity) of the future power output. The integration and correct operation can be carried out with accurate forecasting of the PV output power. A distinct artificial intelligence method was employed in the present study to forecast the PV output power and investigate the accuracy using endogenous data. Discrete wavelet transforms were used to decompose PV output power into approximate and detailed components. The decomposed PV output was fed into an adaptive neuro-fuzzy inference system (ANFIS) input model to forecast the short-term PV power output. Various wavelet mother functions were also investigated, including Haar, Daubechies, Coiflets, and Symlets. The proposed model performance was highly correlated to the input set and wavelet mother function. The statistical performance of the wavelet-ANFIS was found to have better efficiency compared with the ANFIS and ANN models. In addition, wavelet-ANFIS coif2 and sym4 offer the best precision among all the studied models. The result highlights that the combination of wavelet decomposition and the ANFIS model can be a helpful tool for accurate short-term PV output forecasting and yield better efficiency and performance than the conventional model.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9192438