Loading…
Secure Triggering Frame-Based Dynamic Power Saving Mechanism against Battery Draining Attack in Wi-Fi-Enabled Sensor Networks
Wireless local area networks (WLANs) have recently evolved into technologies featuring extremely high throughput and ultra-high reliability. As WLANs are predominantly utilized in Internet of Things (IoT) and Wi-Fi-enabled sensor applications powered by coin cell batteries, these high-efficiency, hi...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (16), p.5131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wireless local area networks (WLANs) have recently evolved into technologies featuring extremely high throughput and ultra-high reliability. As WLANs are predominantly utilized in Internet of Things (IoT) and Wi-Fi-enabled sensor applications powered by coin cell batteries, these high-efficiency, high-performance technologies often cause significant battery depletion. The introduction of the trigger frame-based uplink transmission method, designed to enhance network throughput, lacks adequate security measures, enabling attackers to manipulate trigger frames. Devices receiving such frames must respond immediately; however, if a device receives a fake trigger frame, it fails to enter sleep mode, continuously sending response signals and thereby increasing power consumption. This problem is specifically acute in next-generation devices that support multi-link operation (MLO), capable of simultaneous transmission and reception across multiple links, rendering them more susceptible to battery draining attacks than conventional single-link devices. To address this, this paper introduces a Secure Triggering Frame-Based Dynamic Power Saving Mechanism (STF-DPSM) specifically designed for multi-link environments. Experimental results indicate that even in a multi-link environment with only two links, the STF-DPSM improves energy efficiency by an average of approximately 55.69% over conventional methods and reduces delay times by an average of approximately 44.7% compared with methods that consistently utilize encryption/decryption and integrity checks. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24165131 |